A Gear Fault Diagnosis Method Based on Reactive Power and Semi-Supervised Learning

断层(地质) 计算机科学 功率(物理) 人工智能 可靠性工程 机器学习 地质学 工程类 地震学 物理 量子力学
作者
Guangyu Liang,Feng Li,Xinyu Pang,Bowen Zhang,Peng Yang
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (12): 126107-126107 被引量:4
标识
DOI:10.1088/1361-6501/ad71e8
摘要

Abstract In gearbox gear fault diagnosis based on motor current signals, the gear fault characteristic frequency component is often overshadowed by the fundamental frequency component of the current. In addition, the complex working conditions during actual production and use make it difficult to collect gear operation monitoring data containing labeled feature information. To address the above problems, a semi-supervised learning method based on reactive power signals is proposed for gear fault diagnosis of gearboxes. First, the method utilizes the Hilbert transform to process the current signal of the drive motor in the mechanical system, from which the reactive power is constructed. Then, the reactive power signal is analyzed by spectral analysis as a basis for gear fault diagnosis. Subsequently, the GAF-CNN-MTDL(Gramian angular field—convolutional neural network-mean teacher deep learning) fault diagnosis model is proposed to convert the reactive power signal into a two-dimensional image by using the GAF, and the semi-supervised training method of the average teacher is applied to input the fault dataset into the gear fault diagnosis model which is based on the CNN as the main backbone after the fault dataset has been divided into the labeled and the unlabeled dataset in accordance with a certain ratio. Finally, the gear fault dataset is used for method validation. The experimental outcomes demonstrate the method’s proficiency in effectively emphasizing the fault feature information pertaining to the gear part, and the introduced GAF-CNN-MTDL fault diagnosis model enables the utilization of a minimal number of labeled samples to achieve highly accurate gear fault diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助rxm采纳,获得10
刚刚
所所应助ganson采纳,获得10
1秒前
我们谈什么完成签到,获得积分10
1秒前
2秒前
2秒前
嘟嘟完成签到,获得积分10
2秒前
浮游应助LIU采纳,获得10
2秒前
炕上的西西弗应助LIU采纳,获得10
2秒前
2秒前
3秒前
在水一方应助干净傲霜采纳,获得10
3秒前
juzitinghai完成签到,获得积分10
4秒前
4秒前
蓝色天空完成签到,获得积分10
5秒前
石斑鱼完成签到,获得积分10
5秒前
脑洞疼应助苗条小甜瓜采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
caizx完成签到,获得积分10
5秒前
6秒前
Moi发布了新的文献求助30
6秒前
6秒前
小石头发布了新的文献求助10
6秒前
aaa发布了新的文献求助10
6秒前
7秒前
Yocohua发布了新的文献求助10
7秒前
自觉若魔完成签到,获得积分20
7秒前
所所应助淡定的猎豹采纳,获得10
7秒前
苏苏应助asdfqwer采纳,获得10
8秒前
8秒前
8秒前
细心浩阑发布了新的文献求助30
9秒前
9秒前
11秒前
自觉若魔发布了新的文献求助10
11秒前
ding应助鲜于灵竹采纳,获得10
11秒前
zmgsci发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
12秒前
derrickZ完成签到 ,获得积分10
13秒前
Akim应助震动的晓凡采纳,获得10
13秒前
一二发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4676421
求助须知:如何正确求助?哪些是违规求助? 4054144
关于积分的说明 12536954
捐赠科研通 3748276
什么是DOI,文献DOI怎么找? 2070316
邀请新用户注册赠送积分活动 1099307
科研通“疑难数据库(出版商)”最低求助积分说明 979027