An fNIRS representation and fNIRS-scales multimodal fusion method for auxiliary diagnosis of amnestic mild cognitive impairment

功能近红外光谱 神经影像学 认知 计算机科学 认知障碍 人工智能 代表(政治) 心理学 认知心理学 神经科学 前额叶皮质 政治 政治学 法学
作者
Shiyu Cheng,Pan Shang,Yingwei Zhang,Jianhe Guan,Yiqiang Chen,Zeping Lv,Shuyun Huang,Yajing Liu,Haiqun Xie
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:96: 106646-106646 被引量:9
标识
DOI:10.1016/j.bspc.2024.106646
摘要

Amnestic mild cognitive impairment (aMCI) is the prodromal period of more serious neurodegenerative diseases (e.g., Alzheimer's disease), characterized by declines in memory and thinking abilities. Auxiliary assessment and early diagnosis of aMCI are crucial in preventing the continued deterioration of cognitive abilities; nevertheless, this task poses a formidable challenge due to the inconspicuous nature of early symptoms. Functional near-infrared spectroscopy (fNIRS) is a non-invasive, low-cost, and user-friendly neuroimaging technique, which is capable of detecting subtle changes in brain activity among different subjects. Moreover, multimodal fusion can assess cognition status from different perspectives and enhance auxiliary diagnosis accuracy significantly. This paper proposes an fNIRS representation and fNIRS-scales multimodal fusion method for auxiliary diagnosis of aMCI. Specifically, we convert one-dimensional time-series fNIRS signals into two-dimensional images with Gramian Angular Field and achieve end-to-end fNIRS representation with convolutional neural network. Then, we integrate the extracted features with cognitive scales at the decision-making level to improve the diagnosis accuracy of aMCI, employing the data balance strategy to prevent biased prediction. What is more, based on the fNIRS features, we also propose a data-driven cognitive scales-screening method to help the physician to assess aMCI with higher efficiency. We conducted experiments on 86 subjects (including 53 aMCI patients and 33 normal controls) recruited from Foshan First People's Hospital. The diagnosis accuracy reaches 88.02% and 93.90% with fNIRS representation and further fNIRS-scales fusion, respectively. With the cognitive scales-screening, we delete 50% scales, reducing test time but only losing 2.54% accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
spc68完成签到,获得积分0
刚刚
行走的小鱼完成签到,获得积分10
刚刚
悠悠完成签到,获得积分10
1秒前
2秒前
悦耳的乐松完成签到,获得积分10
3秒前
5114发布了新的文献求助10
5秒前
5秒前
科研通AI6.1应助哈哈哈采纳,获得10
7秒前
7秒前
爱咋咋地完成签到,获得积分10
8秒前
CodeCraft应助优秀采纳,获得10
9秒前
Sepvvvvirtue完成签到 ,获得积分10
9秒前
小兔子完成签到,获得积分10
10秒前
11秒前
高贵觅风完成签到,获得积分10
11秒前
Chuwei完成签到 ,获得积分10
11秒前
11秒前
14秒前
科研通AI6应助慢羊羊采纳,获得10
14秒前
明亮嘉熙发布了新的文献求助10
17秒前
2182265539发布了新的文献求助10
18秒前
库里力完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
22秒前
深情安青应助ZiJay采纳,获得10
23秒前
明亮嘉熙完成签到,获得积分10
26秒前
28秒前
yao完成签到,获得积分10
29秒前
欣喜的薯片完成签到 ,获得积分10
29秒前
溜了溜了完成签到 ,获得积分10
30秒前
明天完成签到 ,获得积分10
30秒前
30秒前
爱打乒乓球完成签到,获得积分10
32秒前
黄飚完成签到,获得积分10
33秒前
33秒前
haoduoyu完成签到,获得积分10
33秒前
ZiJay发布了新的文献求助10
34秒前
34秒前
火星上雅寒完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741705
求助须知:如何正确求助?哪些是违规求助? 5403758
关于积分的说明 15343201
捐赠科研通 4883272
什么是DOI,文献DOI怎么找? 2624986
邀请新用户注册赠送积分活动 1573801
关于科研通互助平台的介绍 1530722