Evaluation of different machine learning approaches and aerosol optical depth in PM2.5 prediction

地球静止轨道 均方误差 环境科学 气溶胶 气象学 平均绝对误差 遥感 计算机科学 大气科学 统计 数学 卫星 地质学 物理 工程类 航空航天工程
作者
Hamed Karimian,Yaqian Li,Youliang Chen,Zhaoru Wang
出处
期刊:Environmental Research [Elsevier BV]
卷期号:216: 114465-114465 被引量:38
标识
DOI:10.1016/j.envres.2022.114465
摘要

Atmospheric Aerosol Optical Depth (AOD), derived from polar-orbiting satellites, has shown potential in PM2.5 predictions. However, this important source of data suffers from low temporal resolution. Recently, geostationary satellites provide AOD data in high temporal and spatial resolution. However, the feasibility of these data in PM2.5 prediction needs further study. In this paper, we analyzed the impact of AOD derived from Himawari-8 in PM2.5 predictions. Moreover, by combining wavelet, machine learning techniques, and minimum redundancy maximum relevance (mRMR), a novel hybrid model was proposed. The results showed that AOD missing rate over Yangtze River Delta region is the highest in Nanjing, Hefei, and Maanshan. In addition, missing rates are the lowest in winter and summer (∼80%). Moreover, we found that considering AOD, as an auxiliary variable in the model, could not improve the accuracy of PM2.5 predictions, and in some cases decreased it slightly. In comparison with other models, our proposed hybrid model showed higher prediction accuracy, R2 is improved by 11.64% on average, and root mean square error, mean absolute error, and mean absolute percentage error is reduced by 26.82%, 27.24%, and 29.88% respectively. This research provides a general overview of the availability of Himawari-8 AOD data and its feasibility in PM2.5 predictions. In addition, it evaluates different machine learning approaches in PM2.5 predictions. Our proposed framework can be used in other regions to predict different air pollutants concentrations and can be used as an aid for air pollution controlling programs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ygg应助huangfan采纳,获得10
3秒前
刺猬完成签到,获得积分10
4秒前
4秒前
花生米一粒粒完成签到,获得积分10
5秒前
5秒前
5秒前
大大完成签到,获得积分10
6秒前
所所应助小科采纳,获得10
7秒前
开朗寇发布了新的文献求助10
7秒前
称心寒松发布了新的文献求助10
9秒前
10秒前
甜甜世立发布了新的文献求助10
12秒前
12秒前
田様应助科研论文的狗采纳,获得10
12秒前
翌烨春夏完成签到 ,获得积分10
13秒前
14秒前
17秒前
17秒前
17秒前
000完成签到,获得积分10
19秒前
彼岸完成签到,获得积分20
20秒前
开心灰狼发布了新的文献求助10
20秒前
yuechat发布了新的文献求助10
20秒前
Lucas应助yuhuai采纳,获得10
21秒前
000发布了新的文献求助10
22秒前
我的麦子熟了完成签到,获得积分10
23秒前
灵犀完成签到,获得积分10
24秒前
烟花应助生产队的建设者采纳,获得10
24秒前
Jasper应助彼岸采纳,获得10
26秒前
威尔逊2完成签到,获得积分10
26秒前
27秒前
zpz发布了新的文献求助50
27秒前
Hello应助西瓜草莓火龙果采纳,获得30
28秒前
科研通AI5应助跳跃的浩阑采纳,获得10
29秒前
郭泓嵩完成签到,获得积分10
29秒前
NexusExplorer应助llllllu采纳,获得10
30秒前
TN发布了新的文献求助40
30秒前
lxy完成签到 ,获得积分20
31秒前
31秒前
高分求助中
The world according to Garb 600
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3822351
求助须知:如何正确求助?哪些是违规求助? 3364752
关于积分的说明 10432580
捐赠科研通 3083554
什么是DOI,文献DOI怎么找? 1696262
邀请新用户注册赠送积分活动 815693
科研通“疑难数据库(出版商)”最低求助积分说明 769252