Bayesian Neural Network for Predicting Scores of Student Physical Fitness

计算机科学 人工神经网络 贝叶斯概率 机器学习 人工智能 贝叶斯网络 身体素质 物理疗法 医学
作者
Yu Chen,Yunhang Mu,Jiadong Zhu
出处
期刊:Concurrency and Computation: Practice and Experience [Wiley]
卷期号:37 (27-28)
标识
DOI:10.1002/cpe.70397
摘要

ABSTRACT Forecasting the physical fitness of university students holds significant importance, as fitness is not only a key health indicator but also a critical factor influencing academic performance and overall well‐being. Accurate predictions of future fitness levels can inform targeted interventions, enabling institutions to enhance student health outcomes effectively. In this work, we propose a Bayesian neural network (BNN) approach for predicting student physical fitness. The proposed method offers two key advantages, one of which is that it provides confidence measures (e.g., prediction variance) alongside forecasts, and its inherent Bayesian framework helps mitigate overfitting, improving generalization. Our experimental results demonstrate that the proposed BNN model successfully predicts nine key physical fitness indicators while also identifying the most influential factors affecting prediction accuracy. Comparative evaluations show that our method outperforms baseline approaches, achieving a prediction accuracy of 93.7%. Notably, among the nine indicators, pull‐up and sit‐up performance exhibit a substantially stronger impact on overall fitness predictions compared to the other seven indicators. These findings underscore the efficacy of our Bayesian neural network in forecasting student physical fitness, offering a robust tool for educators and health professionals to support data‐driven fitness assessments and interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李里哩发布了新的文献求助10
1秒前
1秒前
CipherSage应助Aythunder采纳,获得10
2秒前
2秒前
szy完成签到,获得积分0
3秒前
无心的小甜瓜完成签到 ,获得积分10
3秒前
4秒前
4秒前
坦率绿草完成签到 ,获得积分10
4秒前
4秒前
Mic应助六子采纳,获得10
5秒前
洁净思枫发布了新的文献求助30
5秒前
无敌龙傲天完成签到,获得积分10
5秒前
5秒前
木木完成签到,获得积分10
7秒前
7秒前
8秒前
丘比特应助菜菜采纳,获得30
9秒前
闪闪涫应助李里哩采纳,获得10
9秒前
Hello应助李里哩采纳,获得10
9秒前
灵巧剑心发布了新的文献求助10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
sudaaoi发布了新的文献求助10
12秒前
故居发布了新的文献求助10
12秒前
揽星发布了新的文献求助10
12秒前
完美世界应助木本采纳,获得10
13秒前
梁寒发布了新的文献求助10
14秒前
英俊的铭应助小蚊子采纳,获得10
14秒前
15秒前
美好斓发布了新的文献求助10
15秒前
16秒前
Akim应助yangyun采纳,获得10
17秒前
嘉月拾完成签到,获得积分20
17秒前
灵巧剑心完成签到,获得积分20
18秒前
Tangjianjian完成签到,获得积分10
18秒前
20秒前
执着南琴发布了新的文献求助10
20秒前
小马甲应助weiwei采纳,获得50
22秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620793
求助须知:如何正确求助?哪些是违规求助? 4705330
关于积分的说明 14931678
捐赠科研通 4763128
什么是DOI,文献DOI怎么找? 2551196
邀请新用户注册赠送积分活动 1513780
关于科研通互助平台的介绍 1474661