Residual Metal Artifact Reduction in CT Images: An Unsupervised Residual and Contrastive Learning Approach for Preserving Metal Structures

人工智能 残余物 卷积神经网络 计算机科学 深度学习 工件(错误) 基本事实 还原(数学) 模式识别(心理学) 无监督学习 阶段(地层学) 计算机视觉 算法 数学 地质学 几何学 古生物学
作者
YongSoo Kim,Jung‐Woo Lee,Byung Chul Lee,Hyunseok Seo
出处
期刊:Medical Physics [Wiley]
卷期号:52 (11)
标识
DOI:10.1002/mp.70078
摘要

Abstract Background It is easy to find computed tomography (CT) images that include metals such as implants, bone plates, and bone shafts. These metals replacing body parts, cause serious artifacts in the CT image originated by x‐ray beam‐hardening. Traditionally, CT physics‐based image processing techniques were empirically applied to reduce metal artifacts (MAs). Recently, with the great success of deep learning, many studies on metal artifact reduction (MAR) using convolutional neural networks (CNNs) have been introduced. Purpose Most of them commonly meet a challenge to obtain ground truth images for MAR in clinical practice. Thus, for effective MAR without ground truth images, we propose a residual MA model for unsupervised deep learning scheme in CT images. Methods In the 1st stage, MAs are extracted by CT physics‐inspired residual model, which is enabled by the residual learning scheme. The result of the 1st stage is fed into the input for the 2nd stage, where artifacts that are not reduced enough in the 1st stage are further removed by the contrastive learning scheme. Then, the networks in the 2nd stage can easily recognize the original structures due to primary artifact reduction in the 1st stage and can properly refine the image. Results Our model was validated on three datasets. The results show that the proposed model outperforms other MAR models, preserving both original body and metal structures while reducing MAs effectively. Conclusions We hope that this unsupervised learning model can contribute to good achievements in the MAR field while overcoming the limitations of data construction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助科研通管家采纳,获得30
1秒前
慕青应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Dean应助科研通管家采纳,获得150
1秒前
浮游应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
无花果应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
昏睡的蟠桃应助科研通管家采纳,获得150
1秒前
2秒前
今后应助科研通管家采纳,获得10
2秒前
4秒前
herococa应助cc采纳,获得10
4秒前
Lucas应助义气的妙松采纳,获得10
6秒前
6秒前
畅快海云完成签到 ,获得积分10
6秒前
7秒前
李健的小迷弟应助Yakamoz采纳,获得10
8秒前
小蘑菇应助夏熠采纳,获得10
8秒前
光亮的问凝完成签到 ,获得积分10
8秒前
www完成签到,获得积分10
9秒前
希望天下0贩的0应助777采纳,获得10
9秒前
zqy1111发布了新的文献求助10
9秒前
在学习发布了新的文献求助10
10秒前
ele_yuki完成签到,获得积分10
11秒前
科研通AI6应助小四喜采纳,获得10
11秒前
12秒前
幸运小怪兽完成签到,获得积分10
12秒前
13秒前
在水一方应助corner采纳,获得10
13秒前
13秒前
英姑应助CHANGJIAGAO采纳,获得10
15秒前
16秒前
16秒前
小小关注了科研通微信公众号
17秒前
18秒前
777完成签到,获得积分20
18秒前
Wudifairy完成签到,获得积分10
20秒前
20秒前
QL完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061902
求助须知:如何正确求助?哪些是违规求助? 4285844
关于积分的说明 13355704
捐赠科研通 4103720
什么是DOI,文献DOI怎么找? 2246915
邀请新用户注册赠送积分活动 1252595
关于科研通互助平台的介绍 1183502