Enhancing resolution of micro-CT images of reservoir rocks using super resolution

体素 人工智能 计算机科学 特征(语言学) 图像分辨率 采样(信号处理) 计算机视觉 分辨率(逻辑) 模式识别(心理学) 地质学 哲学 语言学 滤波器(信号处理)
作者
Bochao Zhao,Nishank Saxena,Ronny Hofmann,Chaitanya Pradhan,Amie Hows
出处
期刊:Computers & Geosciences [Elsevier BV]
卷期号:170: 105265-105265 被引量:11
标识
DOI:10.1016/j.cageo.2022.105265
摘要

Current hardware configuration of micro-CT detectors puts a lower limit on voxel size that can be acquired while maintaining a sufficiently large field of view. This limits the degree to which rock pores can be resolved in a micro-CT image and thus restricting the application envelope of Digital Rock technology. Super resolution techniques can refine voxel size while maintaining a sufficiently large field of view using pairs of low- and high-resolution images for training. However, for interpretation of quality of Digital Rock results, image quality is not determined by voxel size alone but by the degree to which a feature such as pore throat is resolved, which depends on both the physical size of the feature and voxel size. Furthermore, artificially down-sampling finer voxel size images to obtain images of coarser voxel size for training deep learning networks is not sufficient to capture the mapping between images acquired at different resolutions. This is especially true for reservoir rocks because the noise and artifacts introduced during imaging and reconstruction are more complex than that captured by simple down-sampling operation. We overcome these two limitations, by (1) using the ratio of pore throat size and voxel size (N) to group training dataset instead of voxel size and (2) using pairs of registered micro-CT images acquired using a state-of-the-art detector instead of synthetically down-sampled images. We show that combination of these two techniques produced images with better sharpness and contrast and enabled us to refine voxel size significantly beyond what is possible using the current imaging technology while maintaining the field of view.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ehsl完成签到,获得积分10
1秒前
LSJ发布了新的文献求助30
1秒前
1秒前
研友_VZG7GZ应助荆轲刺秦王采纳,获得10
2秒前
科研通AI5应助科研的猫采纳,获得10
2秒前
领导范儿应助Stella采纳,获得10
3秒前
dddddd发布了新的文献求助10
3秒前
余琳发布了新的文献求助10
4秒前
无限达完成签到,获得积分10
4秒前
4秒前
赘婿应助拉格朗日柴犬采纳,获得10
4秒前
Lucas应助冷静的烧鹅采纳,获得10
7秒前
Re完成签到,获得积分10
8秒前
8秒前
花满楼发布了新的文献求助10
8秒前
边界序列发布了新的文献求助60
9秒前
9秒前
9秒前
10秒前
linjiaying完成签到,获得积分10
11秒前
11秒前
shin0324完成签到,获得积分10
11秒前
深情安青应助听话的梦之采纳,获得10
11秒前
曹煜晗完成签到 ,获得积分10
11秒前
柿柿发布了新的文献求助10
12秒前
13秒前
搞起科研废寝忘食完成签到,获得积分10
13秒前
大师现在发布了新的文献求助10
14秒前
星辰大海应助芸苔AA采纳,获得10
14秒前
wen发布了新的文献求助10
15秒前
丘比特应助YLS采纳,获得10
15秒前
无花果应助科研通管家采纳,获得10
17秒前
lee发布了新的文献求助10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
小二郎应助科研通管家采纳,获得10
17秒前
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Pathology of Laboratory Rodents and Rabbits (5th Edition) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813902
求助须知:如何正确求助?哪些是违规求助? 3358304
关于积分的说明 10393640
捐赠科研通 3075589
什么是DOI,文献DOI怎么找? 1689439
邀请新用户注册赠送积分活动 812865
科研通“疑难数据库(出版商)”最低求助积分说明 767400