Deep learning for predicting major pathological response to neoadjuvant chemoimmunotherapy in non-small cell lung cancer: A multicentre study

化学免疫疗法 医学 队列 内科学 肿瘤科 深度学习 新辅助治疗 癌症 人工智能 乳腺癌 计算机科学 免疫疗法
作者
Yunlang She,Bingxi He,Fang Wang,Yifan Zhong,Tingting Wang,Zhenchuan Liu,Minglei Yang,Bentong Yu,Jiajun Deng,Xiwen Sun,Chunyan Wu,Likun Hou,Yuming Zhu,Yang Yang,Hongjie Hu,Di Dong,Chang Chen,Jie Tian
出处
期刊:EBioMedicine [Elsevier BV]
卷期号:86: 104364-104364 被引量:46
标识
DOI:10.1016/j.ebiom.2022.104364
摘要

BackgroundThis study, based on multicentre cohorts, aims to utilize computed tomography (CT) images to construct a deep learning model for predicting major pathological response (MPR) to neoadjuvant chemoimmunotherapy in non-small cell lung cancer (NSCLC) and further explore the biological basis under its prediction.Methods274 patients undergoing curative surgery after neoadjuvant chemoimmunotherapy for NSCLC at 4 centres from January 2019 to December 2021 were included and divided into a training cohort, an internal validation cohort, and an external validation cohort. ShuffleNetV2x05-based features of the primary tumour on the CT scans within the 2 weeks preceding neoadjuvant administration were employed to develop a deep learning score for distinguishing MPR and non-MPR. To reveal the underlying biological basis of the deep learning score, a genetic analysis was conducted based on 25 patients with RNA-sequencing data.FindingsMPR was achieved in 54.0% (n = 148) patients. The area under the curve (AUC) of the deep learning score to predict MPR was 0.73 (95% confidence interval [CI]: 0.58–0.86) and 0.72 (95% CI: 0.58–0.85) in the internal validation and external validation cohorts, respectively. After integrating the clinical characteristic into the deep learning score, the combined model achieved satisfactory performance in the internal validation (AUC: 0.77, 95% CI: 0.64–0.89) and external validation cohorts (AUC: 0.75, 95% CI: 0.62–0.87). In the biological basis exploration for the deep learning score, a high deep learning score was associated with the downregulation of pathways mediating tumour proliferation and the promotion of antitumour immune cell infiltration in the microenvironment.InterpretationThe proposed deep learning model could effectively predict MPR in NSCLC patients treated with neoadjuvant chemoimmunotherapy.FundingThis study was supported by National Key Research and Development Program of China, China (2017YFA0205200); National Natural Science Foundation of China, China (91959126, 82022036, 91959130, 81971776, 81771924, 6202790004, 81930053, 9195910169, 62176013, 8210071009); Beijing Natural Science Foundation, China (L182061); Strategic Priority Research Program of Chinese Academy of Sciences, China (XDB38040200); Chinese Academy of Sciences, China (GJJSTD20170004, QYZDJ-SSW-JSC005); Shanghai Hospital Development Center, China (SHDC2020CR3047B); and Science and Technology Commission of Shanghai Municipality, China (21YF1438200).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助正直雍采纳,获得10
1秒前
1秒前
Angelina发布了新的文献求助10
1秒前
Akim应助yyf采纳,获得10
2秒前
2秒前
叶飞发布了新的文献求助30
3秒前
伶俐剑心发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
yang完成签到,获得积分20
4秒前
伶俐送终完成签到,获得积分20
5秒前
仇悦发布了新的文献求助10
5秒前
SS完成签到,获得积分10
6秒前
6秒前
呜呼啦呼发布了新的文献求助10
6秒前
siki发布了新的文献求助10
7秒前
棋士发布了新的文献求助10
7秒前
Think发布了新的文献求助10
7秒前
叶飞完成签到,获得积分10
8秒前
舒心映易完成签到,获得积分10
8秒前
秦琨发布了新的文献求助10
8秒前
niuniu完成签到,获得积分20
9秒前
9秒前
伶俐送终发布了新的文献求助30
10秒前
芝士大王完成签到 ,获得积分10
10秒前
10秒前
júpiter完成签到,获得积分10
11秒前
adre应助舒适路人采纳,获得10
11秒前
xiao完成签到,获得积分10
11秒前
wushangyu发布了新的文献求助10
12秒前
13秒前
20240901完成签到,获得积分10
13秒前
荷戟执子手完成签到,获得积分10
13秒前
13秒前
14秒前
Think完成签到,获得积分10
14秒前
15秒前
白菜发布了新的文献求助10
15秒前
zcz完成签到,获得积分20
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Encyclopedia of Geology (2nd Edition) 2000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3786287
求助须知:如何正确求助?哪些是违规求助? 3332088
关于积分的说明 10253581
捐赠科研通 3047409
什么是DOI,文献DOI怎么找? 1672530
邀请新用户注册赠送积分活动 801330
科研通“疑难数据库(出版商)”最低求助积分说明 760143