Test Problems for Large-Scale Multiobjective and Many-Objective Optimization

多目标优化 最优化问题 数学优化 进化计算 优化测试函数 计算机科学 集合(抽象数据类型) 比例(比率) 进化算法 数学 多群优化 量子力学 物理 程序设计语言
作者
Ran Cheng,Yaochu Jin,Markus Olhofer,Bernhard Sendhoff
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:47 (12): 4108-4121 被引量:306
标识
DOI:10.1109/tcyb.2016.2600577
摘要

The interests in multiobjective and many-objective optimization have been rapidly increasing in the evolutionary computation community. However, most studies on multiobjective and many-objective optimization are limited to small-scale problems, despite the fact that many real-world multiobjective and many-objective optimization problems may involve a large number of decision variables. As has been evident in the history of evolutionary optimization, the development of evolutionary algorithms (EAs) for solving a particular type of optimization problems has undergone a co-evolution with the development of test problems. To promote the research on large-scale multiobjective and many-objective optimization, we propose a set of generic test problems based on design principles widely used in the literature of multiobjective and many-objective optimization. In order for the test problems to be able to reflect challenges in real-world applications, we consider mixed separability between decision variables and nonuniform correlation between decision variables and objective functions. To assess the proposed test problems, six representative evolutionary multiobjective and many-objective EAs are tested on the proposed test problems. Our empirical results indicate that although the compared algorithms exhibit slightly different capabilities in dealing with the challenges in the test problems, none of them are able to efficiently solve these optimization problems, calling for the need for developing new EAs dedicated to large-scale multiobjective and many-objective optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助笑点低不言采纳,获得10
1秒前
小星星完成签到 ,获得积分10
2秒前
Aloha完成签到 ,获得积分10
2秒前
4秒前
6秒前
8秒前
内向的绝施完成签到 ,获得积分10
9秒前
爱吃大米发布了新的文献求助10
9秒前
觅云发布了新的文献求助30
10秒前
QingMRI完成签到,获得积分10
10秒前
10秒前
所所应助ShellyHan采纳,获得10
13秒前
酷波er应助ShellyHan采纳,获得10
13秒前
爱吃大米完成签到,获得积分10
14秒前
16秒前
wubobo完成签到,获得积分10
17秒前
lin完成签到,获得积分20
19秒前
树枝完成签到 ,获得积分10
20秒前
abcdefg发布了新的文献求助20
21秒前
星辰大海应助爱吃大米采纳,获得10
21秒前
雪宝宝发布了新的文献求助10
22秒前
25秒前
26秒前
无花果应助滕州笑采纳,获得10
27秒前
無期完成签到 ,获得积分10
28秒前
28秒前
zrs发布了新的文献求助30
30秒前
30秒前
30秒前
雪宝宝完成签到,获得积分10
31秒前
ZW发布了新的文献求助10
32秒前
勤恳冷雪发布了新的文献求助10
32秒前
lianqing完成签到,获得积分10
34秒前
35秒前
36秒前
39秒前
39秒前
40秒前
岁月荣耀发布了新的文献求助10
43秒前
觅云完成签到 ,获得积分10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777918
求助须知:如何正确求助?哪些是违规求助? 3323458
关于积分的说明 10214533
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758315