Visible Light-Sensitive Yttrium-Doped Indium Vanadate Photocatalysts for Hydrogen Evolution

钒酸铋 可见光谱 光催化 材料科学 分解水 带隙 制氢 钒酸盐 兴奋剂 光电子学 纳米技术 光化学 化学 催化作用 冶金 有机化学 氧化物 生物化学
作者
Shota Higuchi,Hiroshi Irie
出处
期刊:Meeting abstracts 卷期号:MA2016-02 (49): 3642-3642
标识
DOI:10.1149/ma2016-02/49/3642
摘要

Solar hydrogen (H 2 ) production using a photocatalyst through water splitting is one of the key technologies for utilization of renewable energy and environmental protection [1] . So, there have been extensive researches over decades for powdered photocatalysts due to the simplicity of the process and the possibility for large-scale H 2 production. However, most photocatalysts reported so far respond only to ultraviolet (UV) light, and thus highly-active and visible-light sensitive photocatalysts have been sought for an effective use of solar energy. The approaches used in these studies can be classified into two categories. The first is to control the band structure of wide-gap photocatalysts by doping foreign elements or making solid solutions to be sensitive to visible light [2] , and the second is to combine the two-types of visible-light sensitive photocatalysts in the presence or absence of a sacrificial agent, so called Z-scheme system [3-5] . Regarding the first approach, the solid solution of bismuth vanadate (BiVO 4 ) and yttrium vanadate (YVO 4 , Bi x Y 1-x VO 4 (BYV)) was reported to be the overall water-splitting photocatalyst with the bandgap (Eg) of ca. 3.0 eV [6] . Although the Eg of BiVO 4 is small (2.8 eV) and can be sensitive to visible light, YVO 4 has a wide bandgap energy (Eg=3.4 eV). Thus the solid solution of the two photocatalysts had the Eg of ca. 3.0 eV, which could not utilize visible light sufficiently. So, in the present study, we tried to utilize indium vanadate (InVO 4 ) in place of BiVO 4 and dope yttrium (Y) at an indium (In) site to form In 1-x Y x VO 4 . Then we expected that In 1-x Y x VO 4 would have a smaller Eg and be sensitive to visible light because the Eg of InVO 4 (1.9 eV) is smaller than that of BiVO 4 [7] . InVO 4 (denoted as IV) and In 1-x Y x VO 4 (x = 0.1, IYV) were prepared by a hydrothermal method. Commercially available indium oxide (In 2 O 3 ), yttrium oxide (Y 2 O 3 ), and vanadyl sulfate n-hydrate (VOSO 4 (nH 2 O)) were dissolved in 0.4 M of nitric acid aqueous solution for 30 m. The solution was treated hydrothermally at 200 °C for 72 h in teflon-lined stainless steel autoclave, and then cooled to room temperature. After the treatment, the obtained precipitates of IV, and IYV photocatalysts were washed with a sufficient amount of distilled water several times and dried at 100 °C for 2 h. After drying, they were heated at 300 °C in air for 2 h. Pt was deposited onto IV (Pt/IV) by photodeposition method. Crystal structures of the samples were determined by powder X-ray diffraction (XRD) and absorption spectra of the samples were recorded on a UV-visible spectrometer (UV-vis). IV and IYV were able to be assigned to a homogeneous orthorhombic phase of IV according to the JCPDS card #71-1689. Peak shifts to the lower angle were observed in IYV, compared to IV. This is reasonable because the ionic radius of Y (1.032 nm) is larger than that of In (0.930 nm). So, we considered that Y was successfully introduced at the In site. The onset of the UV-vis spectrum of IYV shifted to the lower wavelength than that of IV (Fig. 1) and the Eg of IYV and IV were estimated to be 2.0 eV and 1.9 eV, respectively. We evaluated the H 2 evolution in the presence of methanol as a sacrificial agent, caused by the half reaction of water in the presence of Pt/IV and IYV photocatalysts under visible light irradiation (> 420 nm). Pt/IV could not evolve H 2 at all. However, even though Pt was not loaded on IYV, IYV could evolve H 2 under visible irradiation. The potential of the conduction band minimum (CBM) of IV with Eg of 1.9 eV was located more positively than that of H 2 evolution (0 V vs. SHE) [7]. In contrast, the CBM potential of IYV shifted negatively beyond that of H 2 evolution. Thus IYV was capable of producing H 2 thermodynamically. We expect the further enhancement of the activity through the optimization of doping concentration and the aid of cocatalyst. [1] A. Fujishima et al., Nature 238, 37 (1972) [2] K. Maeda et al., Nature, 440, 16 (2006) [3] K. Sayama et al., J. Photo. Photo. A: Chem., 148, 71 (2002) [4] Y. Sasaki et al., J. Phys. Chem. C, 113, 17536 (2009) [5] H. Irie et al., J. Mater. Chem. A, 4, 3061 (2016). [6] H. Liu et al., J. Mater. Chem., 21, 16535 (2011) [7] X. Lin et al., J. Alloys Comp. 635, 256 (2015) Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yrw完成签到,获得积分10
1秒前
小蘑菇应助Gtpangda采纳,获得10
1秒前
李健应助dcc采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
nanshou完成签到,获得积分10
2秒前
2秒前
大个应助crisis采纳,获得10
3秒前
111完成签到 ,获得积分10
3秒前
科目三应助迷你的从蕾采纳,获得10
4秒前
ben发布了新的文献求助10
5秒前
5秒前
灵巧的台灯完成签到,获得积分10
5秒前
Jasper应助Phoebe0730采纳,获得10
5秒前
cxxxx完成签到,获得积分20
5秒前
大模型应助666采纳,获得10
6秒前
Owen应助福满財多采纳,获得10
6秒前
领导范儿应助11采纳,获得10
6秒前
6秒前
刚睡醒发布了新的文献求助10
7秒前
张宝完成签到,获得积分10
7秒前
叶子发布了新的文献求助10
8秒前
9秒前
水煮菜发布了新的文献求助10
10秒前
10秒前
星辰大海应助点心采纳,获得30
10秒前
11秒前
11秒前
12秒前
尔刀完成签到,获得积分10
12秒前
13秒前
李某发布了新的文献求助10
13秒前
14秒前
14秒前
Mercury完成签到,获得积分10
14秒前
科研通AI6应助干净的以冬采纳,获得10
15秒前
16秒前
16秒前
CR7应助LYB吕采纳,获得20
16秒前
biopyx完成签到,获得积分10
17秒前
七米日光完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405289
求助须知:如何正确求助?哪些是违规求助? 4523606
关于积分的说明 14094385
捐赠科研通 4437378
什么是DOI,文献DOI怎么找? 2435624
邀请新用户注册赠送积分活动 1427777
关于科研通互助平台的介绍 1406072