作者
Sukhbir Singh,Neelam Sharma,Yash Paul Singla,Sandeep Arora
摘要
Objective: To develop and validate simple, sensitive, accurate, specific, precise, rugged, robust and reproducible UV spectrophotometry method for the quantitative estimation of Nefopam hydrochloride (NFH) loaded in polymethacrylate nanospheres (NFH-NS) as per ICH guidelines. Methods: Polymethacrylate nanospheres of NFH were fabricated by quasi-solvent diffusion technique. The analytical method used phosphate buffer, pH 7.4 as a solvent for the estimation of NFH which has the absorption maxima (λ max ) value 266 nm. The calibration curve was plotted for NFH in beer’s range of 50-400 μg/ml. linear regression of calibration curve was performed by Graph Pad Prism version 5.01 for windows to find a p -value of the regression coefficient. The amount of NFH in polymethacrylate nanospheres (NFH-NS) was analyzed spectrophotometrically using regression equation obtained from the calibration curve. The analytical method was validated for linearity, range, accuracy, specificity, precision, ruggedness and robustness. Sandell’s sensitivity value was determined for validation of sensitivity. The drug content of polymethacrylate nanospheres (NFH-NS) was estimated using regression equation. Results: Polymethacrylate nanospheres of NFH were successfully fabricated by quasi-solvent diffusion technique. Regression equation obtained from calibration curve was y = 0.002x+0.001. The estimated amount of NFH in 50 mg of NFH-NS analyzed by UV spectrophotometry using regression equation was found 10.19 mg. Developed analytical method for NFH was found linear in the concentration range of 50-400 μg/ml with high correlation coefficient of 0.9994 with p-value 0.008325 (* p <0.05). Molar absorptivity (e), sandell’s sensitivity and best-fit value slope was found to be 2.5 × 10 -3 , 0.115 and 0.002509±0.00002569, respectively. Mean percentage recovery was found in accepted limit of 98%-102% which validated the accuracy of the method. Method exhibited system precision as well as intra-day precision as exemplified by % RSD of 0.570 and 0.704%, respectively. The proposed analytical method was validated for ruggedness, sensitivity, and robustness. Conclusion: It was concluded that developed UV spectrophotometry method was accurate, precise, linear, specific, rugged, robust and sensitive and, therefore, can be used for routine analysis and quantitative estimation of NFH loaded in polymethacrylate nanospheres.