Multiple Defects in Energy Metabolism in Alzheimers Disease

阿尔茨海默病 线粒体 生物 谷氨酸受体 神经科学 疾病 β淀粉样蛋白 神经退行性变 钙信号传导 细胞生物学 受体 医学 病理 信号转导 生物化学
作者
Ildete L. Ferreira,Rosa Resende,Elisabete Ferreiro,A. Cristina Rego,Cláudia Pereira
出处
期刊:Current Drug Targets [Bentham Science]
卷期号:11 (10): 1193-1206 被引量:178
标识
DOI:10.2174/1389450111007011193
摘要

Alzheimer's disease (AD) is the most common form of dementia in old age. Cognitive impairment in AD may be partially due to overall hypometabolism. Indeed, AD is characterized by an early region-specific decline in glucose utilization and by mitochondrial dysfunction, which have deleterious consequences for neurons through increased production of reactive oxygen species (ROS), ATP depletion and activation of cell death processes. In this article, we provide an overview of the alterations on energetic metabolism occurring in AD. First, we resume the evidences that link the 'metabolic syndrome' with increased risk for developing AD and revisit the major changes occurring on both extra-mitochondrial and mitochondrial metabolic pathways, as revealed by imaging studies and biochemical analysis of brain and peripheral samples obtained from AD patients. We also cover the recent findings on cellular and animal models that highlight mitochondrial dysfunction as a fundamental mechanism in AD pathogenesis. Recent evidence posits that mitochondrial abnormalities in this neurodegenerative disorder are associated with changes in mitochondrial dynamics and can be induced by amyloid-beta (Aβ) that progressively accumulates within this organelle, acting as a direct toxin. Furthermore, Aβ induces activation of glutamate N-methyl-D-aspartate receptors (NMDARs) and/or excessive release of calcium from endoplasmic reticulum (ER) that may underlie mitochondrial calcium dyshomeostasis thereby disturbing organelle functioning and, ultimately, damaging neurons. Throughout the review, we further discuss several therapeutic strategies aimed to restore neuronal metabolic function in cellular and animal models of AD, some of which have reached the stage of clinical trials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
资新烟完成签到 ,获得积分10
1秒前
HAOHAO完成签到,获得积分20
3秒前
隐形曼青应助believe采纳,获得10
3秒前
健忘雅寒发布了新的文献求助20
4秒前
6秒前
JamesPei应助fahbfafajk采纳,获得10
8秒前
香香香发布了新的文献求助10
8秒前
horse82完成签到,获得积分10
10秒前
11秒前
Qst完成签到,获得积分10
12秒前
BowieHuang应助幽默身影采纳,获得10
12秒前
14秒前
在水一方应助li采纳,获得50
17秒前
英俊的铭应助千寻采纳,获得10
17秒前
优秀白开水完成签到,获得积分10
18秒前
18秒前
Qst发布了新的文献求助10
19秒前
BowieHuang应助箱箱采纳,获得10
20秒前
21秒前
21秒前
万能图书馆应助huaxu采纳,获得10
21秒前
22秒前
SAKURA发布了新的文献求助10
23秒前
猪猪猪完成签到,获得积分10
25秒前
酱婶完成签到,获得积分10
25秒前
陈杰完成签到,获得积分10
25秒前
believe发布了新的文献求助10
26秒前
顺顺尼发布了新的文献求助10
26秒前
donwe发布了新的文献求助10
27秒前
27秒前
28秒前
领导范儿应助karina采纳,获得10
30秒前
薛佳佳完成签到 ,获得积分10
31秒前
开元完成签到,获得积分10
32秒前
上帝粒子应助萝卜不困采纳,获得10
32秒前
酱婶发布了新的文献求助10
33秒前
BowieHuang应助yyanxuemin919采纳,获得10
34秒前
顺顺尼完成签到,获得积分10
36秒前
管夜白完成签到,获得积分10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563569
求助须知:如何正确求助?哪些是违规求助? 4648446
关于积分的说明 14684930
捐赠科研通 4590411
什么是DOI,文献DOI怎么找? 2518501
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432