A variable selection method based on mutual information and variance inflation factor

多重共线性 方差膨胀系数 共线性 特征选择 相互信息 统计 降维 变量 差异(会计) 变量(数学) 线性回归 数学 计算机科学 计量经济学 人工智能 业务 数学分析 会计
作者
Jiehong Cheng,Jun Sun,Kunshan Yao,Min Xu,Yan Cao
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:268: 120652-120652 被引量:43
标识
DOI:10.1016/j.saa.2021.120652
摘要

Feature selection plays a vital role in the quantitative analysis of high-dimensional data to reduce dimensionality. Recently, the variable selection method based on mutual information (MI) has attracted more and more attention in the field of feature selection, where the relevance between the candidate variable and the response is maximized and the redundancy of the selected variables is minimized. However, multicollinearity often is a serious problem in linear models. Collinearity can cause unstable parameter estimation, unreliable models, and weak predictive ability. In order to address this problem, the variance inflation factor (VIF) was introduced for feature selection. Therefore, a variable selection method based on MI combined with VIF was proposed in this paper, called Mutual Information-Variance Inflation Factor (MI-VIF). By calculating the MI between the independent variable and the response variable, the variable with greater MI was selected to maximize the correlation between the independent variable and the response variable. By calculating the VIF between the independent variables, the multicollinearity test was performed. The variables that cause the multicollinearity of the model were eliminated to minimize the collinearity between the independent variables. The proposed method was tested based on two high-dimensional spectral datasets. The regression models (PLSR, MLR) were established based on feature selection through MI-VIF and MI-based methods (MIFS, MMIFS) to compare the prediction accuracy of the models. The results showed that under two datasets, the MI-VIF showed a good prediction performance. Based on the tea dataset, the established MI-VIF-MLR model achieved accuracy with Rp2 of 0.8612 and RMSEP of 0.4096, the MI-VIF-PLSR model achieved accuracy with Rp2 of 0.8614 and RMSEP of 0.4092. Based on the diesel fuels dataset, the established MI-VIF-MLR model achieved accuracy with Rp2 of 0.9707 and RMSEP of 0.6568, the MI-VIF-PLSR model achieved accuracy with Rp2 of 0.9431 and RMSEP of 0.9675. In addition, the MI-VIF was compared with the Successive projections algorithm (SPA), which is a method to reduce the collinearity between variables in the wavelength selection of the near-infrared spectrum. It was found that MI-VIF also had a good predictive effect compared to SPA. It proves that the MI-VIF is an effective variable selection method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贪玩手链完成签到 ,获得积分10
1秒前
zzjjww发布了新的文献求助30
1秒前
1秒前
残幻应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
残幻应助科研通管家采纳,获得10
2秒前
残幻应助科研通管家采纳,获得10
2秒前
2秒前
星辰大海应助张emo采纳,获得10
2秒前
星辰大海应助奥黛丽采纳,获得10
4秒前
丰知然应助叫秋田犬的猫采纳,获得10
4秒前
没写名字233完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
7秒前
8秒前
8秒前
qiao发布了新的文献求助10
9秒前
CC发布了新的文献求助10
9秒前
10秒前
ily.发布了新的文献求助10
10秒前
11秒前
舒伯特完成签到 ,获得积分10
12秒前
12秒前
JamesPei应助张emo采纳,获得10
13秒前
MM完成签到,获得积分10
13秒前
13秒前
梁家瑜发布了新的文献求助30
13秒前
鲜于枫发布了新的文献求助10
13秒前
Souliko完成签到,获得积分10
13秒前
14秒前
乐乐应助waa采纳,获得10
14秒前
英俊的铭应助msk采纳,获得10
15秒前
Archy发布了新的文献求助10
15秒前
等等等等发布了新的文献求助10
16秒前
Akim应助前行的灿采纳,获得10
16秒前
感动馒头发布了新的文献求助10
18秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3888509
求助须知:如何正确求助?哪些是违规求助? 3430818
关于积分的说明 10771645
捐赠科研通 3155903
什么是DOI,文献DOI怎么找? 1742727
邀请新用户注册赠送积分活动 841323
科研通“疑难数据库(出版商)”最低求助积分说明 785885