聚类分析
分子动力学
催化作用
材料科学
纳米颗粒
离解(化学)
层次聚类
Atom(片上系统)
化学物理
计算化学
纳米技术
计算机科学
物理化学
人工智能
化学
有机化学
嵌入式系统
作者
Monami Tsunawaki,Satoru Fukuhara,Yasushi Shibuta
标识
DOI:10.2320/matertrans.mt-m2021032
摘要
Unsupervised machine learning (ML) is examined for the result of molecular dynamics (MD) simulation to extract characteristics of catalytic reaction. O–H bond dissociation of ethanol on Fe–Co nanoparticle in ab initio MD simulation [S. Fukuhara et al., Chem. Phys. Lett. 731 (2019) 136619] is employed as an example. Hierarchical clustering of radial distribution function successfully classifies coordinates on reaction in the dendrogram. Moreover, receiver operating characteristic curve reveals the distance to the farthest-neighbor atom from the target atom is a dominant descriptor for the clustering. An optimum structure of catalytic nanoparticle is predicted based on these automated analyses. This study shows a new way of post-process of results of MD simulations based on the unsupervised learning technique and it paves the way for a new possibility of ML-based materials design.
科研通智能强力驱动
Strongly Powered by AbleSci AI