A wavelet packet transform-based deep feature transfer learning method for bearing fault diagnosis under different working conditions

人工智能 计算机科学 特征提取 断层(地质) 模式识别(心理学) 学习迁移 残余物 噪音(视频) 特征(语言学) 小波包分解 时域 时频分析 频域 小波 小波变换 工程类 算法 计算机视觉 语言学 哲学 地震学 地质学 滤波器(信号处理) 图像(数学)
作者
Xiao Yu,Zhongting Liang,Youjie Wang,Hongshen Yin,Xiaowen Liu,Wanli Yu,Yanqiu Huang
出处
期刊:Measurement [Elsevier BV]
卷期号:201: 111597-111597 被引量:63
标识
DOI:10.1016/j.measurement.2022.111597
摘要

Deep learning has achieved significant advances in the fault diagnosis of rotating machinery. However, it still suffers many challenges such as various working conditions, large environmental noise interference and insufficient effective data samples. Signal time–frequency analysis and feature transfer learning methods can help solve these problems. Combining wavelet packet transform (WPT) and multi-kernel maximum mean discrepancy (MK-MMD), this paper proposes a novel residual network (ResNet)-based deep transfer diagnosis model for bearing faults. Firstly, this paper devises a distinctive WPT time–frequency feature map (WPT-TFFM) construction method using WPT for time–frequency analysis on nonlinear and non-stationary vibration signals. Then, a modified multi-group parallel ResNet network is structured to extract the depth features of WPT-TFFM for the characteristics of small size and feature dispersion. Then, MK-MMD is further applied to evaluate the distribution difference between the depth features of the source and target domain data. Combining with the classification loss of the sample set with the source domain, the depth features extraction network is optimized to achieve better cross-domain invariance and fault state differentiation capability of the depth features. To evaluate the proposed method, this work conducts comparative experiments on two test rigs under different working loads and speeds. The results reveal that the proposed method offers excellent fault diagnosis and noise prevention capability for working condition transfer tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
johnny发布了新的文献求助10
刚刚
刚刚
ZZ发布了新的文献求助10
1秒前
1秒前
1秒前
汉堡包应助哈哈哈采纳,获得10
2秒前
Beebee24完成签到,获得积分10
3秒前
4秒前
6秒前
6秒前
肝胆外科医生完成签到,获得积分10
6秒前
科研通AI5应助stkp采纳,获得10
6秒前
6秒前
丰富芷荷发布了新的文献求助10
7秒前
7秒前
MQ&FF完成签到,获得积分0
9秒前
或无情发布了新的文献求助10
9秒前
中豪贾发布了新的文献求助10
9秒前
9秒前
哈哈完成签到,获得积分10
9秒前
9秒前
gxc完成签到,获得积分10
10秒前
zhangruiii发布了新的文献求助10
10秒前
10秒前
脑洞疼应助哈哈哈采纳,获得10
10秒前
Shinewei发布了新的文献求助10
10秒前
小黑板完成签到,获得积分10
10秒前
12秒前
12秒前
NexusExplorer应助Jiang采纳,获得10
12秒前
14秒前
14秒前
科研通AI5应助lifang采纳,获得10
15秒前
johnny完成签到,获得积分10
15秒前
yanyan完成签到,获得积分20
15秒前
研友_VZG7GZ应助Frog采纳,获得30
15秒前
lhp完成签到,获得积分10
15秒前
16秒前
NexusExplorer应助fd163c采纳,获得10
16秒前
领导范儿应助ayin采纳,获得10
16秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820668
求助须知:如何正确求助?哪些是违规求助? 3363564
关于积分的说明 10423418
捐赠科研通 3081956
什么是DOI,文献DOI怎么找? 1695358
邀请新用户注册赠送积分活动 815060
科研通“疑难数据库(出版商)”最低求助积分说明 768856