Investigation of Graphite Electrode Degradation in Lithium-Ion Cells Using 4D-STEM

阳极 材料科学 石墨 电池(电) 锂离子电池 纳米技术 纳米尺度 扫描透射电子显微镜 电极 锂(药物) 透射电子显微镜 复合材料 化学 医学 物理化学 功率(物理) 物理 量子力学 内分泌学
作者
Saran Pidaparthy,Daniel P. Abraham,Marco‐Tulio F. Rodrigues,Hanyu Hou,Jian‐Min Zuo
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (2): 346-346
标识
DOI:10.1149/ma2022-012346mtgabs
摘要

The development of longer lasting and faster charging lithium-ion batteries (LIBs) remains a critical engineering priority for the U.S. Department of Energy. To enable the next-generation technology, it is essential to understand the nature and extent of materials failure during battery operation. Under fast-charging conditions, it has been shown that graphite particles, which comprise the active material of the LIB anode, suffer irreversible material degradation that limits ultimate battery performance. This damage to the graphite manifests as turbostratic lattice disorder, severe morphological roughening, and anode swelling [1]. While these findings are essential to understand the nature of damage to the anode under fast-charge conditions, it remains to be seen whether such damage occurs at slower rates or is instead accelerated by extreme rate conditions and aging. In this regard, the recent advances in high-resolution electron microscopy (HREM) and four-dimensional scanning transmission electron microscopy (4D-STEM) methods provide the essential tools to enable nanoscopic quantification of battery degradation [2], [3]. In this work, we use advanced analytical electron microscopy and diffraction strategies to analyze nanoscopic degradation of graphite anode material under different cycling rate and aging conditions. The results of this work will demonstrate novel strategies for identifying nanoscale structural disorder that arise in battery materials as well as provide key understanding of graphite material failure to aid in the development of high-performance anode materials. We study (in post-mortem ) the graphite particle cross-sections harvested from LIBs at different aging conditions for both C/2 (i.e., 2 hours to full charge) and 6C (i.e., 10 minutes to full charge) rate. At the nano- to atomic-scale, we rely primarily on aberration-corrected STEM for imaging and diffraction acquisition for each sample (see Figure 1 for the results). High resolution imaging reveals the extent of lattice disorder and amorphous character localized at graphite pore edges. The 4D-STEM data helps to further quantify the extent and distribution of nanoscale structural disorder (including permanent strain and turbostratic disorder). The experimental methods employed to acquire the datasets and the strategies employed to interpret the data to understand the nature of the resulting damage, including recent progress into Cepstral STEM, will be discussed. Additional supporting evidences of graphite disorder from Raman spectroscopy studies and rate-dependent anode swelling from scanning electron microscopy will also be presented. References : [1] S. Pidaparthy, M.-T. F. Rodrigues, J.-M. Zuo, and D. P. Abraham, “Increased Disorder at Graphite Particle Edges Revealed by Multi-length Scale Characterization of Anodes from Fast-Charged Lithium-Ion Cells,” J. Electrochem. Soc. , vol. 168, no. 10, p. 100509, 2021. [2] J.-M. Zuo et al. , “Data-Driven Electron Microscopy: Electron Diffraction Imaging of Materials Structural Properties,” arXiv Prepr. arXiv2110.02070 , 2021. [3] E. Padgett et al. , “The exit-wave power-cepstrum transform for scanning nanobeam electron diffraction: robust strain mapping at subnanometer resolution and subpicometer precision,” Ultramicroscopy , vol. 214, p. 112994, 2020. Acknowledgements : SP acknowledges support from the U. S. Department of Energy Graduate Student Research (SCGSR) program. The SCGSR program is administered by the Oak Ridge Institute for Science and Education for the U. S. Department of Energy under contract number DE‐SC0014664. This work was carried out in part in the Materials Research Laboratory Central Research Facilities, University of Illinois. DA and MTFR acknowledge support from DOE’s Vehicle Technologies Office. This document has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. Figure 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cc发布了新的文献求助10
刚刚
1秒前
Lucas应助刘思琪采纳,获得10
1秒前
娲牛佳发布了新的文献求助10
2秒前
2秒前
Lucas应助大请第一比巴比采纳,获得10
2秒前
3秒前
tachang发布了新的文献求助10
4秒前
绝影完成签到 ,获得积分10
4秒前
jjjx发布了新的文献求助10
4秒前
小熊熊完成签到,获得积分10
5秒前
5秒前
5秒前
7秒前
北风完成签到 ,获得积分10
8秒前
cc完成签到,获得积分10
9秒前
尊敬问旋完成签到,获得积分10
9秒前
浣熊小呆发布了新的文献求助10
9秒前
10秒前
Emanon完成签到 ,获得积分10
10秒前
xx发布了新的文献求助10
10秒前
12秒前
12秒前
研友_8RlG1n完成签到,获得积分10
13秒前
13秒前
13秒前
懦弱的时光完成签到,获得积分20
14秒前
Xin发布了新的文献求助10
15秒前
浣熊小呆完成签到,获得积分10
17秒前
shelemi完成签到,获得积分10
19秒前
19秒前
FashionBoy应助忐忑的石头采纳,获得10
20秒前
20秒前
20秒前
慕青应助ding采纳,获得10
20秒前
鲤鱼依白发布了新的文献求助10
20秒前
852应助xx采纳,获得10
21秒前
乐乐应助娲牛佳采纳,获得10
21秒前
SciGPT应助wiese采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Benefit of Whole-Pelvis Radiation for Patients With Muscle-Invasive Bladder Cancer: An Inverse Probability Treatment Weighted Analysis 510
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4702872
求助须知:如何正确求助?哪些是违规求助? 4070615
关于积分的说明 12586543
捐赠科研通 3770964
什么是DOI,文献DOI怎么找? 2082701
邀请新用户注册赠送积分活动 1110066
科研通“疑难数据库(出版商)”最低求助积分说明 988073