LFANet: Lightweight feature attention network for abnormal cell segmentation in cervical cytology images

计算机科学 人工智能 分割 特征(语言学) 特征提取 模式识别(心理学) 过程(计算) 编码器 深度学习 语言学 哲学 操作系统
作者
Yanli Zhao,Chong Fu,Sen Xu,Lin Cao,Hongfeng Ma
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:145: 105500-105500 被引量:33
标识
DOI:10.1016/j.compbiomed.2022.105500
摘要

With the widely applied computer-aided diagnosis techniques in cervical cancer screening, cell segmentation has become a necessary step to determine the progression of cervical cancer. Traditional manual methods alleviate the dilemma caused by the shortage of medical resources to a certain extent. Unfortunately, with their low segmentation accuracy for abnormal cells, the complex process cannot realize an automatic diagnosis. In addition, various methods on deep learning can automatically extract image features with high accuracy and small error, making artificial intelligence increasingly popular in computer-aided diagnosis. However, they are not suitable for clinical practice because those complicated models would result in more redundant parameters from networks. To address the above problems, a lightweight feature attention network (LFANet), extracting differentially abundant feature information of objects with various resolutions, is proposed in this study. The model can accurately segment both the nucleus and cytoplasm regions in cervical images. Specifically, a lightweight feature extraction module is designed as an encoder to extract abundant features of input images, combining with depth-wise separable convolution, residual connection and attention mechanism. Besides, the feature layer attention module is added to precisely recover pixel location, which employs the global high-level information as a guide for the low-level features, capturing dependencies of channel features. Finally, our LFANet model is evaluated on all four independent datasets. The experimental results demonstrate that compared with other advanced methods, our proposed network achieves state-of-the-art performance with a low computational complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tkx是流氓兔完成签到,获得积分10
刚刚
刚刚
刚刚
1秒前
隐形曼青应助大陆采纳,获得10
2秒前
合适的芷巧完成签到,获得积分10
2秒前
万能图书馆应助邹随阴采纳,获得10
3秒前
搜集达人应助整齐的小霜采纳,获得10
3秒前
zz完成签到,获得积分10
3秒前
3秒前
点看世界发布了新的文献求助10
4秒前
4秒前
在水一方应助LSS采纳,获得10
4秒前
复杂飞飞完成签到,获得积分10
4秒前
馋嘴小糖完成签到,获得积分10
4秒前
yiyi完成签到,获得积分10
4秒前
雨荷发布了新的文献求助10
4秒前
4秒前
露露发布了新的文献求助10
5秒前
lcdamoy完成签到,获得积分10
5秒前
无花果应助arron采纳,获得10
5秒前
橘橘完成签到,获得积分20
6秒前
南城花开完成签到 ,获得积分10
6秒前
ln1111发布了新的文献求助10
6秒前
卷卷完成签到 ,获得积分10
6秒前
顾矜应助qq采纳,获得10
7秒前
缥缈若枫发布了新的文献求助10
7秒前
Lucas应助南京小鱼儿采纳,获得10
7秒前
7秒前
112233完成签到,获得积分20
7秒前
暖暖完成签到 ,获得积分10
8秒前
9秒前
hjx发布了新的文献求助10
9秒前
小蘑菇应助洛鸢采纳,获得10
10秒前
QINXD完成签到,获得积分10
10秒前
wyx发布了新的文献求助10
11秒前
11秒前
11秒前
yoyo完成签到,获得积分10
12秒前
Yolo完成签到,获得积分10
12秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
The Effect of Irrigation Solutions on Recurrence of Chronic Subdural Hematoma: A Consecutive Cohort Study of 234 Patients 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Introduction to Linear Optimization, by Dimitris Bertsimas and John N. Tsitsiklis 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828500
求助须知:如何正确求助?哪些是违规求助? 3370806
关于积分的说明 10465265
捐赠科研通 3090821
什么是DOI,文献DOI怎么找? 1700556
邀请新用户注册赠送积分活动 817893
科研通“疑难数据库(出版商)”最低求助积分说明 770571