Analysis of WBC, RBC, Platelets Using Deep Learning

白细胞 血细胞 血小板 医学 红细胞 血涂片 分割 全血细胞计数 外周血细胞 外周血 骨髓 人工智能 计算机科学 病理 内科学 疟疾
作者
Srushti Shinde,Jui Oak,Kajal Shrawagi,Prachi Mukherji
标识
DOI:10.1109/punecon52575.2021.9686524
摘要

Human blood composition is mainly described into three components which are White Blood Cell (WBCs), Red Blood Cell (RBCs) and platelets. The Complete Blood Cell (CBC)count is used to diagnose the health of a particular person. Proper identification of blood components is the major factor for various uncertainties and health issues in the human body. This paper deals with the analysis of different blood cells using the You Only Look Once (YOLO) framework and has been trained with a dataset of blood smear images taken from BCCD (Blood Cell Count and Detection). Diseases such as dengue, bone marrow disorder, thyroid condition, iron deficiency require blood cell count for the diagnosis. Ordinary methods used in the hospital laboratories require counting of blood cells manually using devices. This led to imprecise outcomes which were strenuous, slow and laborious. The proposed method focuses on obtaining better accuracy with YOLOv5 as compared to previous versions of YOLO models which is based on automatic detection, segmentation and count of each blood cell from blood smear images. Also, Real time implementation can take place and immediately results can be sent for further diagnosis of patient. The main objective of this paper is to identify three major categories of blood cells and improved accuracy is achieved for detection and segmentation of blood cells. The outcome of the experiment on YOLO v5s concludes that highest mAP was observed for 8 batches,75 epochs with mAP value as 93%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
mjj发布了新的文献求助10
4秒前
善学以致用应助黄林旋采纳,获得10
5秒前
5秒前
烟花应助包容可乐采纳,获得10
5秒前
小马甲应助haitun采纳,获得10
5秒前
科研通AI2S应助小陆同学采纳,获得10
5秒前
7秒前
7秒前
x1完成签到,获得积分10
7秒前
无辜的思远完成签到,获得积分10
7秒前
爆米花应助xiax03采纳,获得10
8秒前
云清完成签到,获得积分20
8秒前
9秒前
拉总发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
zzzq应助时差采纳,获得10
11秒前
外科医生发布了新的文献求助10
11秒前
搜集达人应助地表飞猪采纳,获得10
11秒前
11秒前
风中的凝梦完成签到,获得积分10
11秒前
高高完成签到 ,获得积分10
12秒前
冷静的荔枝完成签到,获得积分10
12秒前
MiLi发布了新的文献求助10
12秒前
13秒前
山南水北发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
15秒前
肖木木发布了新的文献求助10
16秒前
17秒前
独特的秋发布了新的文献求助10
17秒前
fzzzzlucy完成签到,获得积分10
17秒前
17秒前
阿九发布了新的文献求助10
17秒前
Holland应助dm采纳,获得20
18秒前
18秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842227
求助须知:如何正确求助?哪些是违规求助? 3384315
关于积分的说明 10534047
捐赠科研通 3104710
什么是DOI,文献DOI怎么找? 1709789
邀请新用户注册赠送积分活动 823323
科研通“疑难数据库(出版商)”最低求助积分说明 774034