Swin Transformer Assisted Prior Attention Network for Medical Image Segmentation

计算机科学 变压器 可解释性 人工智能 分割 卷积神经网络 编码器 深度学习 机器学习 模式识别(心理学) 工程类 操作系统 电气工程 电压
作者
Zhihao Liao,Neng Fan,K.W. Xu
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:12 (9): 4735-4735 被引量:7
标识
DOI:10.3390/app12094735
摘要

Transformer complements convolutional neural network (CNN) has achieved better performance than improved CNN-based methods. Specially, Transformer is utilized to be combined with U-shaped structure, skip-connections, encoder, and even them all together. However, the intermediate supervision network based on the coarse-to-fine strategy has not been combined with Transformer to improve the generalization of CNN-based methods. In this paper, we propose Swin-PANet, which is applying a window-based self-attention mechanism by Swin Transformer in the intermediate supervision network, called prior attention network. A new enhanced attention block based on CCA is also proposed to aggregate the features from skip-connections and prior attention network, and further refine details of boundaries. Swin-PANet can address the dilemma that traditional Transformer network has poor interpretability in the process of attention calculation and Swin-PANet can insert its attention predictions into prior attention network for intermediate supervision learning which is humanly interpretable and controllable. Hence, the intermediate supervision network assisted by Swin Transformer provides better attention learning and interpretability in network for accurate and automatic medical image segmentation. The experimental results evaluate the effectiveness of Swin-PANet which outperforms state-of-the-art methods in some famous medical segmentation tasks including cell and skin lesion segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljm发布了新的文献求助10
刚刚
内向的元珊完成签到,获得积分20
刚刚
小二郎应助YMAO采纳,获得10
1秒前
叶公子发布了新的文献求助10
1秒前
律师协会完成签到,获得积分10
2秒前
2秒前
2秒前
lhr发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
xyf完成签到,获得积分10
4秒前
小马甲应助负责新筠采纳,获得20
4秒前
快乐疯样完成签到,获得积分10
4秒前
4秒前
张梦雪发布了新的文献求助10
4秒前
burstsolo完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
nuoran发布了新的文献求助10
6秒前
彭于晏应助发文章12138采纳,获得10
6秒前
科研通AI2S应助TIWOSS采纳,获得10
6秒前
xv完成签到,获得积分10
6秒前
7秒前
Xppcjlan发布了新的文献求助10
7秒前
burstsolo发布了新的文献求助30
7秒前
冰冰发布了新的文献求助10
7秒前
zzzzz发布了新的文献求助50
7秒前
烟花应助ljm采纳,获得10
8秒前
ruby发布了新的文献求助10
9秒前
9秒前
李爱国应助有梦想的咸鱼采纳,获得10
9秒前
ZONG发布了新的文献求助10
10秒前
李爱国应助草莓奶冻采纳,获得10
11秒前
十里发布了新的文献求助10
11秒前
李健应助眯眯眼的板栗采纳,获得10
12秒前
LX完成签到 ,获得积分10
12秒前
灯灯发布了新的文献求助10
13秒前
13秒前
wenruizhang完成签到,获得积分10
13秒前
李健的粉丝团团长应助Oz采纳,获得10
13秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Building Quantum Computers 500
近赤外発光材料の開発とOLEDの高性能化 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870203
求助须知:如何正确求助?哪些是违规求助? 3412449
关于积分的说明 10679651
捐赠科研通 3136967
什么是DOI,文献DOI怎么找? 1730502
邀请新用户注册赠送积分活动 834058
科研通“疑难数据库(出版商)”最低求助积分说明 781072