医学
肺癌
能量(信号处理)
融合
人工智能
计算机科学
放射科
核医学
统计
肿瘤科
数学
语言学
哲学
作者
You-Wei Wang,Chii-Jen Chen,Teh-Chen Wang,Hsu-Cheng Huang,Hsin‐Ming Chen,Jin‐Yuan Shih,Jin‐Shing Chen,Yu‐Sen Huang,Yeun‐Chung Chang,Ruey‐Feng Chang
标识
DOI:10.1016/j.compbiomed.2021.105185
摘要
Lymph node metastasis also called nodal metastasis (Nmet), is a clinically primary task for physicians. The survival and recurrence of lung cancer are related to the Nmet staging from Tumor-Node-Metastasis (TNM) reports. Furthermore, preoperative Nmet prediction is still a challenge for the patient in managing the surgical plan and making treatment decisions. We proposed a multi-energy level fusion model with a principal feature enhancement (PFE) block incorporating radiologist and computer science knowledge for Nmet prediction. The proposed model is custom-designed by gemstone spectral imaging (GSI) with different energy levels on dual-energy computer tomography (CT) from a primary tumor of lung cancer. In the experiment, we take three different energy level fusion datasets: lower energy level fusion (40, 50, 60, 70 keV), higher energy level fusion (110, 120, 130, 140 keV), and average energy level fusion (40, 70, 100, 140 keV). The proposed model is trained by lower energy level fusion that is 93% accurate and the value of Kappa is 86%. When we used the lower energy level images to train the fusion model, there has been a significant difference to other energy level fusion models. Hence, we apply 5-fold cross-validation, which is used to validate the performance result of the multi-keV model with different fusion datasets of energy level images in the pathology report. The cross-validation result also demonstrates that the model with the lower energy level dataset is more robust and suitable in predicting the Nmet of the primary tumor. The lower energy level shows more information of tumor angiogenesis or heterogeneity provided the proposed fusion model with a PFE block and channel attention blocks to predict Nmet from primary tumors.
科研通智能强力驱动
Strongly Powered by AbleSci AI