A Hybrid Fuzzy and K-Nearest Neighbor Approach for Debris Flow Disaster Prevention

泥石流 k-最近邻算法 模糊逻辑 碎片 气象学 计算机科学 人工智能 地理
作者
Te‐Jen Su,Tzung-Shiarn Pan,Yung-Lu Chang,Shou-Sheu Lin,Miin‐Jong Hao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 21787-21797 被引量:11
标识
DOI:10.1109/access.2022.3152906
摘要

Taiwan is located in a high-risk area for natural disasters. In recent years, violent natural disasters have occurred in Taiwan. Numerous disasters—such as flooding, surges of river water level, and earth and rock disasters—are caused by instant heavy rainfall. These disasters cause considerable loss of lives and property. Current disaster warning systems can only provide warnings to large areas and not to specific small areas. Therefore, the current study developed a disaster warning system based on machine learning for evaluating the likelihood of earth and rock disasters so that an early warning can be provided to people who may be affected by these disasters. In contrast to previous relevant studies, which have mostly used regional assessment methods, no large-scale regional simulation was conducted in the present study. Instead, a comprehensive debris flow evaluation model based on information related to soil flow, rock flow, typhoons, and rainfall history was established to provide warnings regarding debris flow disasters. The geological condition, rainfall, soil moisture and river water level in 1-h intervals were evaluated using the K-nearest neighbor algorithm, providing people earth and rock flow information for the area around their homes. Data related to Typhoon Kameiji, Typhoon Xinleke, Typhoon Morak, Typhoon Sura, Typhoon Megi, and the 0823 Tropical depression were used as training data for the developed model, and data related to Typhoon Megi and Typhoon Kangrui were used as testing data. The proposed model can provide earlier warnings than can the Taiwanese government's soil and stone flow warning system. The developed model was used to create a mobile phone application that presents comprehensive and easy-to-understand data on the debris flow warning level, hourly rainfall, total rainfall, and geological conditions in real time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
longquit发布了新的文献求助10
刚刚
zhonglv7应助安详晓亦采纳,获得10
刚刚
1秒前
春衫发布了新的文献求助10
1秒前
2秒前
漂亮的不言完成签到 ,获得积分10
2秒前
充电宝应助cmcm采纳,获得10
2秒前
CompJIN发布了新的文献求助10
3秒前
3秒前
曹璐瑶完成签到,获得积分10
4秒前
ouaixin发布了新的文献求助10
4秒前
mouse0821完成签到,获得积分10
4秒前
5秒前
ding应助Chen采纳,获得10
6秒前
silence关注了科研通微信公众号
7秒前
ALIVE_STAR发布了新的文献求助10
7秒前
竹峪卿发布了新的文献求助10
8秒前
8秒前
脑洞疼应助mouse0821采纳,获得10
8秒前
执着小霸王完成签到,获得积分10
10秒前
甜蜜的灵凡完成签到,获得积分10
10秒前
fjhsg25发布了新的文献求助10
10秒前
CipherSage应助Eric采纳,获得10
11秒前
靳欣妍发布了新的文献求助10
15秒前
15秒前
辛勤从霜完成签到,获得积分10
15秒前
silence发布了新的文献求助10
16秒前
方方在努力完成签到,获得积分10
17秒前
18秒前
18秒前
今天也要开心Y完成签到,获得积分10
18秒前
19秒前
善良的梦槐应助中中采纳,获得10
20秒前
雨小科发布了新的文献求助20
20秒前
Chen发布了新的文献求助10
20秒前
科研通AI5应助zzq778采纳,获得10
20秒前
小蘑菇应助Rosin采纳,获得10
20秒前
20秒前
21秒前
情怀应助叶白山采纳,获得10
21秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
Improvement of Fingering-Induced Pattern Collapse by Adjusting Chemical Mixing Procedure 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4181479
求助须知:如何正确求助?哪些是违规求助? 3717481
关于积分的说明 11718758
捐赠科研通 3397507
什么是DOI,文献DOI怎么找? 1864120
邀请新用户注册赠送积分活动 922114
科研通“疑难数据库(出版商)”最低求助积分说明 833820