亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Hybrid Fuzzy and K-Nearest Neighbor Approach for Debris Flow Disaster Prevention

泥石流 k-最近邻算法 模糊逻辑 碎片 气象学 计算机科学 人工智能 地理
作者
Te‐Jen Su,Tzung-Shiarn Pan,Yung-Lu Chang,Shou-Sheu Lin,Miin‐Jong Hao
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 21787-21797 被引量:11
标识
DOI:10.1109/access.2022.3152906
摘要

Taiwan is located in a high-risk area for natural disasters. In recent years, violent natural disasters have occurred in Taiwan. Numerous disasters—such as flooding, surges of river water level, and earth and rock disasters—are caused by instant heavy rainfall. These disasters cause considerable loss of lives and property. Current disaster warning systems can only provide warnings to large areas and not to specific small areas. Therefore, the current study developed a disaster warning system based on machine learning for evaluating the likelihood of earth and rock disasters so that an early warning can be provided to people who may be affected by these disasters. In contrast to previous relevant studies, which have mostly used regional assessment methods, no large-scale regional simulation was conducted in the present study. Instead, a comprehensive debris flow evaluation model based on information related to soil flow, rock flow, typhoons, and rainfall history was established to provide warnings regarding debris flow disasters. The geological condition, rainfall, soil moisture and river water level in 1-h intervals were evaluated using the K-nearest neighbor algorithm, providing people earth and rock flow information for the area around their homes. Data related to Typhoon Kameiji, Typhoon Xinleke, Typhoon Morak, Typhoon Sura, Typhoon Megi, and the 0823 Tropical depression were used as training data for the developed model, and data related to Typhoon Megi and Typhoon Kangrui were used as testing data. The proposed model can provide earlier warnings than can the Taiwanese government's soil and stone flow warning system. The developed model was used to create a mobile phone application that presents comprehensive and easy-to-understand data on the debris flow warning level, hourly rainfall, total rainfall, and geological conditions in real time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
11发布了新的文献求助10
7秒前
Akim应助lou采纳,获得50
8秒前
CodeCraft应助俏皮的一德采纳,获得10
11秒前
小岳今天吃什么完成签到,获得积分10
17秒前
18秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
桐桐应助科研通管家采纳,获得30
21秒前
传奇3应助科研通管家采纳,获得10
21秒前
21秒前
lou发布了新的文献求助50
22秒前
YIFEI完成签到,获得积分20
26秒前
嗨Honey完成签到 ,获得积分10
27秒前
lou完成签到,获得积分10
29秒前
33秒前
YIFEI发布了新的文献求助10
34秒前
秋蚓完成签到 ,获得积分10
49秒前
51秒前
51秒前
55秒前
强仔爱写文章完成签到,获得积分20
58秒前
59秒前
雪白的听寒完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
orixero应助强仔爱写文章采纳,获得10
1分钟前
111完成签到,获得积分10
1分钟前
小元发布了新的文献求助10
1分钟前
高兴绿柳完成签到 ,获得积分10
1分钟前
cxw完成签到,获得积分10
1分钟前
1分钟前
小元完成签到,获得积分10
1分钟前
1分钟前
情怀应助cxw采纳,获得10
1分钟前
1分钟前
小哈完成签到 ,获得积分10
1分钟前
动漫大师发布了新的文献求助10
1分钟前
2分钟前
cxw发布了新的文献求助10
2分钟前
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780779
求助须知:如何正确求助?哪些是违规求助? 3326334
关于积分的说明 10226507
捐赠科研通 3041459
什么是DOI,文献DOI怎么找? 1669398
邀请新用户注册赠送积分活动 799051
科研通“疑难数据库(出版商)”最低求助积分说明 758732