DLVO理论
土壤水分
化学
Zeta电位
傅里叶变换红外光谱
聚苯乙烯
微塑料
环境化学
化学工程
土壤科学
聚合物
环境科学
材料科学
纳米技术
有机化学
纳米颗粒
工程类
胶体
作者
Yu Wang,Fang Wang,Leilei Xiang,Yongrong Bian,Ziquan Wang,Prashant Srivastava,Xin Jiang,Baoshan Xing
标识
DOI:10.1016/j.jhazmat.2022.128566
摘要
Microplastics (MPs) have attracted increasing concern as emerging contaminants of global importance in recent years. Soil is considered an important sink for MPs. Due to environmental weathering, MP surfaces are often charged, but there are limited studies on the interaction of differentially charged MP with soils. This study constructed Derjaguin-Landau-Verwey-Overbeek (DLVO) potential energy profiles, investigated the interaction mechanism of polystyrene MPs (0.2 µm) with positive (MP+) and negative (MP-) charges on nine typical soils through quantitative analysis of fluorescence intensity. The attachment of MPs to different soils fitted the pseudo-second-order kinetic model well. The attachment isotherm data of MP+ fitted the linear model better, while the MP- data fitted the Langmuir model. The attachment capacity of MPs was significantly correlated with the zeta potential of soils. These results, as well as the fourier transform infrared spectroscopy (FTIR) spectra and scanning electronic microscopy (SEM) images of soils, indicated that electrostatic interactions and physical trapping were the dominant mechanisms for MP attachment to soils. These results showed a strong affinity for MPs attachment on soil and gave insights to predict the transport, fate and ecological effect of different charged MPs in soil.
科研通智能强力驱动
Strongly Powered by AbleSci AI