ω-net: Dual supervised medical image segmentation with multi-dimensional self-attention and diversely-connected multi-scale convolution

计算机科学 分割 人工智能 比例(比率) 图像分割 卷积(计算机科学) 特征(语言学) 图像(数学) 可扩展性 模式识别(心理学) 算法 数据库 人工神经网络 语言学 量子力学 物理 哲学
作者
Zhenghua Xu,Shijie Liu,Di Yuan,Lei Wang,Junyang Chen,Thomas Lukasiewicz,Zhigang Fu,Rui Zhang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:500: 177-190 被引量:36
标识
DOI:10.1016/j.neucom.2022.05.053
摘要

Although U-Net and its variants have achieved some great successes in medical image segmentation tasks, their segmentation performances for small objects are still unsatisfactory. Therefore, in this work, a new deep model, ω-Net, is proposed to achieve more accurate medical image segmentations. The advancements of ω-Net are mainly threefold: First, it incorporates an additional expansive path into U-Net to import an extra supervision signal and obtain a more effective and robust image segmentation by dual supervision. Then, a multi-dimensional self-attention mechanism is further developed to highlight salient features and suppress irrelevant ones consecutively in both spatial and channel dimensions. Finally, to reduce semantic disparity between the feature maps of the contracting and expansive paths, we further propose to integrate diversely-connected multi-scale convolution blocks into the skip connections, where several multi-scale convolutional operations are connected in both series and parallel. Extensive experimental results on three abdominal CT segmentation tasks show that (i) ω-Net greatly outperforms the state-of-the-art image segmentation methods in medical image segmentation tasks; (ii) the proposed three advancements are all effective and essential for ω-Net to achieve the superior performances; and (iii) the proposed multi-dimensional self-attention (resp., diversely-connected multi-scale convolution) is more effective than the state-of-the-art attention mechanisms (resp., multi-scale solutions) for medical image segmentations. The code will be released online after this paper is formally accepted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拣尽南枝完成签到 ,获得积分10
刚刚
fxy完成签到 ,获得积分10
2秒前
陈陈发布了新的文献求助30
3秒前
8秒前
陈陈完成签到,获得积分10
9秒前
hello小鹿完成签到,获得积分10
9秒前
long完成签到 ,获得积分10
10秒前
HL发布了新的文献求助10
12秒前
直率的乐萱完成签到 ,获得积分10
15秒前
唯博完成签到 ,获得积分10
16秒前
小马甲应助过时的机器猫采纳,获得10
18秒前
香蕉觅云应助留胡子的霖采纳,获得10
19秒前
平常甜瓜完成签到 ,获得积分10
19秒前
zho应助研友_nvGy2Z采纳,获得10
21秒前
奋斗的凡完成签到 ,获得积分10
21秒前
安和桥北完成签到 ,获得积分10
23秒前
t通应助加菲丰丰采纳,获得10
23秒前
梅子酒发布了新的文献求助20
30秒前
30秒前
31秒前
Yusra完成签到,获得积分10
32秒前
SCI完成签到,获得积分10
33秒前
微笑冰棍完成签到 ,获得积分10
33秒前
平淡南霜完成签到,获得积分10
33秒前
34秒前
Mandy发布了新的文献求助10
38秒前
NexusExplorer应助山川采纳,获得10
41秒前
42秒前
一手灵魂完成签到,获得积分10
45秒前
酷波er应助空白采纳,获得10
45秒前
阿兰完成签到 ,获得积分10
48秒前
雨夜星空应助科研通管家采纳,获得10
48秒前
48秒前
hywel应助科研通管家采纳,获得20
48秒前
大模型应助科研通管家采纳,获得10
48秒前
彭于晏应助科研通管家采纳,获得10
48秒前
Akim应助科研通管家采纳,获得10
48秒前
隐形曼青应助科研通管家采纳,获得20
49秒前
科研通AI5应助科研通管家采纳,获得10
49秒前
无花果应助科研通管家采纳,获得10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776524
求助须知:如何正确求助?哪些是违规求助? 3322078
关于积分的说明 10208657
捐赠科研通 3037336
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878