惯性
水准点(测量)
收缩
粒子群优化
维数(图论)
限制
航程(航空)
变量(数学)
数学优化
数学
计算机科学
控制理论(社会学)
物理
数学分析
材料科学
工程类
人工智能
经典力学
机械工程
生物
大地测量学
地理
控制(管理)
纯数学
复合材料
内分泌学
标识
DOI:10.1109/cec.2000.870279
摘要
The performance of particle swarm optimization using an inertia weight is compared with performance using a constriction factor. Five benchmark functions are used for the comparison. It is concluded that the best approach is to use the constriction factor while limiting the maximum velocity Vmax to the dynamic range of the variable Xmax on each dimension. This approach provides performance on the benchmark functions superior to any other published results known by the authors.
科研通智能强力驱动
Strongly Powered by AbleSci AI