Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning

组织病理学 肺癌 腺癌 克拉斯 病理 卷积神经网络 人口 深度学习 医学 阶段(地层学) 人工智能 计算机科学 癌症 生物 内科学 结直肠癌 古生物学 环境卫生
作者
Nicolas Coudray,Paolo Ocampo,Theodore Sakellaropoulos,Navneet Narula,Matija Snuderl,David Fenyö,André L. Moreira,Narges Razavian,Aristotelis Tsirigos
出处
期刊:Nature Medicine [Nature Portfolio]
卷期号:24 (10): 1559-1567 被引量:2252
标识
DOI:10.1038/s41591-018-0177-5
摘要

Visual inspection of histopathology slides is one of the main methods used by pathologists to assess the stage, type and subtype of lung tumors. Adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) are the most prevalent subtypes of lung cancer, and their distinction requires visual inspection by an experienced pathologist. In this study, we trained a deep convolutional neural network (inception v3) on whole-slide images obtained from The Cancer Genome Atlas to accurately and automatically classify them into LUAD, LUSC or normal lung tissue. The performance of our method is comparable to that of pathologists, with an average area under the curve (AUC) of 0.97. Our model was validated on independent datasets of frozen tissues, formalin-fixed paraffin-embedded tissues and biopsies. Furthermore, we trained the network to predict the ten most commonly mutated genes in LUAD. We found that six of them—STK11, EGFR, FAT1, SETBP1, KRAS and TP53—can be predicted from pathology images, with AUCs from 0.733 to 0.856 as measured on a held-out population. These findings suggest that deep-learning models can assist pathologists in the detection of cancer subtype or gene mutations. Our approach can be applied to any cancer type, and the code is available at https://github.com/ncoudray/DeepPATH . A convolutional neural network model using feature extraction and machine-learning techniques provides a tool for classification of lung cancer histopathology images and predicting mutational status of driver oncogenes
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Johnny Cash发布了新的文献求助10
刚刚
李爱国应助稳定上分采纳,获得10
刚刚
园润完成签到,获得积分10
刚刚
1秒前
科研通AI5应助炙热冰蓝采纳,获得10
1秒前
科研通AI5应助生物狗采纳,获得10
1秒前
慕青应助xiamqw采纳,获得10
1秒前
2秒前
房东发布了新的文献求助10
2秒前
3秒前
Erin发布了新的文献求助10
3秒前
4秒前
maomao1986完成签到,获得积分10
4秒前
4秒前
zuoyou发布了新的文献求助10
5秒前
5秒前
李雪瑶发布了新的文献求助10
5秒前
所所应助自由如南采纳,获得10
6秒前
6秒前
挑挑发布了新的文献求助10
6秒前
hjhhjh完成签到,获得积分10
7秒前
Joshua发布了新的文献求助10
8秒前
9秒前
9秒前
ZhouYW应助眠眠羊采纳,获得20
9秒前
斯文败类应助香蕉子骞采纳,获得10
9秒前
成就的听露完成签到,获得积分20
9秒前
石油程序员完成签到,获得积分20
9秒前
11秒前
12秒前
wyp87完成签到,获得积分10
12秒前
栗子完成签到,获得积分10
12秒前
苗苗会喵喵完成签到,获得积分10
12秒前
12秒前
个个完成签到,获得积分20
13秒前
洁净山灵发布了新的文献求助10
13秒前
迅速的饼干完成签到,获得积分20
13秒前
卡卡西发布了新的文献求助300
14秒前
14秒前
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805810
求助须知:如何正确求助?哪些是违规求助? 3350734
关于积分的说明 10350610
捐赠科研通 3066591
什么是DOI,文献DOI怎么找? 1683999
邀请新用户注册赠送积分活动 809197
科研通“疑难数据库(出版商)”最低求助积分说明 765407