Hierarchical layered double hydroxides with Ag nanoparticle modification for ethanol sensing

材料科学 层状双氢氧化物 插层(化学) 化学工程 纳米颗粒 介孔材料 吸附 气体扩散 微观结构 乙醇 多孔性 纳米技术 无机化学 催化作用 有机化学 复合材料 氢氧化物 化学 工程类 燃料电池
作者
Yuxiang Qin,Liping Wang,Xiaofei Wang
出处
期刊:Nanotechnology [IOP Publishing]
卷期号:29 (27): 275502-275502 被引量:33
标识
DOI:10.1088/1361-6528/aabf01
摘要

Layered double hydroxides (LDHs) have recently been revealed to be promising in gas sensor applications due to their compositional flexibility and unique 2D-interlayer channel for gas diffusion and adsorption. This work demonstrates highly porous hierarchical LDHs containing Mg2+ and Al3+ (MgAl-LDHs) for ethanol sensing at room temperature. These MgAl-LDHs, with unique flower-like hierarchical structure and mesoporous interlayer, were synthesized hydrothermally using sodium dodecyl sulfate as soft template as well as intercalating agent. Further modification by discrete Ag nanoparticles (NPs) was achieved via an environmentally friendly glucose-reduction method to improve the gas-sensing response of the LDH-based sensor. It is found that the hierarchical MgAl-LDHs show potential in sensing ethanol gas with rapid dynamic characteristics at room temperature; their response magnitude towards ethanol can be enhanced significantly by Ag NP modification. The gas-response value of the Ag-modified MgAl-LDH sensor is about twice that of pristine MgAl-LDH sensors, towards 5-200 ppm ethanol at room temperature. Meanwhile, rapid response-recovery characteristics are achieved, with response and recovery times shorter than 10 and 50 s, respectively. The satisfactory sensing performance and remarkable response enhancement by Ag NP modification are demonstrated in terms of the unique microstructure of the hierarchical MgAl-LDHs and a constructed conductive effect model of Ag functionalized LDHs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
orixero应助怡然糖豆采纳,获得10
1秒前
1秒前
LXR发布了新的文献求助10
3秒前
风乍起关注了科研通微信公众号
3秒前
5秒前
5秒前
荔枝发布了新的文献求助100
5秒前
Hello应助北船余音采纳,获得10
7秒前
maodou发布了新的文献求助10
8秒前
asdfrfg发布了新的文献求助10
8秒前
8秒前
LSHDSG完成签到,获得积分10
8秒前
隐形曼青应助靓丽傲玉采纳,获得10
9秒前
勤奋努力完成签到 ,获得积分10
9秒前
我是老大应助LXR采纳,获得30
10秒前
陶醉小笼包完成签到 ,获得积分10
10秒前
11秒前
上官若男应助gwentea采纳,获得30
12秒前
13秒前
clientprogram发布了新的文献求助30
13秒前
方仕航发布了新的文献求助10
13秒前
科研通AI5应助123采纳,获得10
13秒前
852应助pp采纳,获得10
13秒前
无情的白桃完成签到,获得积分10
14秒前
15秒前
风乍起发布了新的文献求助10
15秒前
15秒前
浮游应助第三人称的自己采纳,获得10
16秒前
16秒前
17秒前
18秒前
18秒前
18秒前
maodou完成签到,获得积分10
19秒前
19秒前
19秒前
白许四十完成签到,获得积分10
19秒前
19秒前
蟪蛄鸪完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5184408
求助须知:如何正确求助?哪些是违规求助? 4370229
关于积分的说明 13609334
捐赠科研通 4222301
什么是DOI,文献DOI怎么找? 2315790
邀请新用户注册赠送积分活动 1314326
关于科研通互助平台的介绍 1263281