Chemo-Mechanical Challenges in Solid-State Batteries

纳米技术 电解质 快离子导体 材料科学 锂(药物) 表征(材料科学) 电极 储能 机械工程 工程物理 工程类 化学 功率(物理) 内分泌学 物理化学 物理 医学 量子力学
作者
John A. Lewis,Jared Tippens,Francisco Javier Quintero Cortes,Matthew T. McDowell
出处
期刊:Trends in chemistry [Elsevier BV]
卷期号:1 (9): 845-857 被引量:202
标识
DOI:10.1016/j.trechm.2019.06.013
摘要

Solid-state electrolytes (SSEs) can transmit stress and strain at interfaces, making solid-state batteries susceptible to chemo-mechanical degradation during electrochemical cycling. Most Li/SSE interfaces are chemically unstable and evolve to form an interphase layer with different structure and properties. Understanding these chemo-mechanical phenomena requires the use of advanced in situ and operando characterization techniques and correlated modeling. The development of high-performance solid-state batteries will require control over the evolution and reactivity of interfaces. Solid-state batteries (SSBs) could exhibit improved safety and energy density compared with traditional lithium-ion systems, but fundamental challenges exist in integrating solid-state electrolytes with electrode materials. In particular, the (electro)chemical evolution of electrode materials and interfaces can often be linked to mechanical degradation due to the all-solid nature of these systems. This review presents recent progress in understanding the coupling between chemistry and mechanics in solid-state batteries, with a focus on three important phenomena: (i) lithium filament growth through solid-state electrolytes, (ii) structural and mechanical evolution at chemically unstable interfaces, and (iii) chemo-mechanical effects within solid-state composite electrodes. Building on recent progress, overcoming chemo-mechanical challenges in solid-state batteries will require new in situ characterization methods and efforts to control evolution of interfaces. Solid-state batteries (SSBs) could exhibit improved safety and energy density compared with traditional lithium-ion systems, but fundamental challenges exist in integrating solid-state electrolytes with electrode materials. In particular, the (electro)chemical evolution of electrode materials and interfaces can often be linked to mechanical degradation due to the all-solid nature of these systems. This review presents recent progress in understanding the coupling between chemistry and mechanics in solid-state batteries, with a focus on three important phenomena: (i) lithium filament growth through solid-state electrolytes, (ii) structural and mechanical evolution at chemically unstable interfaces, and (iii) chemo-mechanical effects within solid-state composite electrodes. Building on recent progress, overcoming chemo-mechanical challenges in solid-state batteries will require new in situ characterization methods and efforts to control evolution of interfaces. the interplay between chemistry and mechanics. In batteries, chemo-mechanics typically manifests as reactions (chemical or electrochemical) driving a mechanical response in a material, such as an electrode particle expanding during the insertion of Li. Conversely, chemo-mechanics can also involve mechanical forces driving chemical changes, such as altering the chemical potential of a system. a mixture consisting of an active electrode material and a solid-state electrolyte (typically as particles). Additives such as conductive carbon can be included to enhance transport properties within the composite. the current density at which lithium metal first penetrates through a solid-state electrolyte in an electrochemical cell, causing a short-circuit. At current densities below this value, cells can be stably cycled without short-circuiting. a phase or mixture of phases that forms at the interface between an electrolyte material and an electrode material in a battery due to chemical or electrochemical reactions. a phase that is both an ionic and electronic conductor. In solid-state electrolytes, the formation of MIECs within the electrolyte is detrimental due to the inability of MIECs to passivate against electrochemical reduction. a solid material with high ionic conductivity (typically greater than 10–4 S cm–1 at room temperature) and low electronic conductivity (typically less than 10–8 S cm–1) that allows for ion transport between the anode and cathode in an electrochemical cell.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
可千万不要躺平呀应助fff采纳,获得20
1秒前
沉默的友安完成签到 ,获得积分10
1秒前
2秒前
ZXCVB完成签到,获得积分10
2秒前
大伟发布了新的文献求助10
5秒前
徐不言完成签到,获得积分10
7秒前
乐乐应助其奈公何采纳,获得10
8秒前
10秒前
fff完成签到,获得积分10
11秒前
搜集达人应助大伟采纳,获得10
11秒前
ZXCVB发布了新的文献求助10
14秒前
15秒前
17秒前
夏蓉完成签到,获得积分10
17秒前
木木发布了新的文献求助10
18秒前
syiimo完成签到 ,获得积分10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
无花果应助科研通管家采纳,获得10
18秒前
wanci应助科研通管家采纳,获得10
18秒前
pluto应助科研通管家采纳,获得10
18秒前
dawn应助科研通管家采纳,获得10
18秒前
18秒前
小白是大美女完成签到,获得积分10
21秒前
Shilly发布了新的文献求助10
22秒前
善良的数据线完成签到,获得积分10
22秒前
95发布了新的文献求助10
23秒前
乔心发布了新的文献求助10
23秒前
26秒前
29秒前
31秒前
33秒前
Zhidong Wei发布了新的文献求助10
34秒前
chee发布了新的文献求助10
40秒前
sanqi发布了新的文献求助10
44秒前
45秒前
科研通AI2S应助平淡的初翠采纳,获得10
46秒前
浮华完成签到,获得积分10
47秒前
深情安青应助酵母君采纳,获得10
49秒前
50秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897074
求助须知:如何正确求助?哪些是违规求助? 3440957
关于积分的说明 10819308
捐赠科研通 3165892
什么是DOI,文献DOI怎么找? 1748978
邀请新用户注册赠送积分活动 845091
科研通“疑难数据库(出版商)”最低求助积分说明 788423