Establishment of a Predictive Model for Surgical Resection of Ground-Glass Nodules

列线图 无线电技术 医学 预测值 置信区间 接收机工作特性 试验预测值 放射科 核医学 内科学
作者
Chenlu Liu,Fan Zhang,Qing Cai,Yuying Shen,Shuangqing Chen
出处
期刊:Journal of The American College of Radiology [Elsevier BV]
卷期号:16 (4): 435-445 被引量:3
标识
DOI:10.1016/j.jacr.2018.09.043
摘要

To establish a predictive model for surgical resection of invasive pulmonary adenocarcinoma (IPA) presenting as ground-glass nodules (GGNs) based on a radiomics nomogram.The CT images of 239 patients with GGNs were collected, of which 160 cases were included in the training set to construct the predictive model and 79 cases were included in the validation set to verify the established predictive model. The least absolute shrinkage and selection operator algorithm was used to select the radiomic features and construct the radiomics tagging. The predictive model for the surgical resection of IPA was constructed using the radiomics nomogram.The presence of IPA showed significant correlations with seven radiomics features (P < .01), which were the independent predictors. The predictive model constructed using the radiomics features performed well on the training set (area under the curve [AUC] 0.792, 95% confidence interval [CI]: 0.720-0.864) and the validation set (AUC 0.773, 95% CI: 0.668-0.877). The predictive model constructed using the clinical information alone was relatively less effective (AUC 0.711, 95% CI: 0.634-0.787). The predictive model constructed by integrating the radiomics features into the clinical information using the radiomics nomogram showed the best predictive ability and calibration in the training set (AUC 0.831, 95% CI: 0.765-0.897) and the validation set (AUC 0.816, 95% CI: 0.724-0.909). Decision curve analysis showed that radiomics nomogram has a certain clinical value.The predictive model for surgical resection of IPA constructed by integrating the radiomics features and the clinical information based on the radiomics nomogram can help clinicians control the operative node and reduce the occurrence of overtreatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
colaboy完成签到,获得积分10
刚刚
1秒前
1秒前
yoyo完成签到,获得积分10
2秒前
燕小丙发布了新的文献求助10
3秒前
唠叨的唠叨虫完成签到,获得积分10
4秒前
sandra完成签到,获得积分10
6秒前
mysong发布了新的文献求助10
6秒前
受伤书文完成签到 ,获得积分10
6秒前
albertchan完成签到,获得积分10
10秒前
刘敏完成签到 ,获得积分10
10秒前
共享精神应助默默小鸽子采纳,获得10
12秒前
dummy发布了新的文献求助10
14秒前
15秒前
gg完成签到 ,获得积分10
16秒前
microlite完成签到,获得积分10
16秒前
孤独的AD钙完成签到,获得积分10
17秒前
呆瓜完成签到,获得积分10
18秒前
Suliove发布了新的文献求助10
19秒前
mysong完成签到,获得积分10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
大模型应助科研通管家采纳,获得10
20秒前
20秒前
超帅连虎应助科研通管家采纳,获得10
20秒前
20秒前
23秒前
lzd完成签到,获得积分10
24秒前
www完成签到,获得积分10
26秒前
大白菜应助松松采纳,获得20
27秒前
CC完成签到 ,获得积分10
27秒前
yshog发布了新的文献求助10
28秒前
29秒前
30秒前
32秒前
35秒前
Suliove发布了新的文献求助10
35秒前
tony完成签到,获得积分10
37秒前
不会失忆完成签到,获得积分10
39秒前
酸奶巧克力完成签到,获得积分10
39秒前
乐悠悠完成签到 ,获得积分10
39秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Media as Procedures of Communication 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4132391
求助须知:如何正确求助?哪些是违规求助? 3669092
关于积分的说明 11603360
捐赠科研通 3366159
什么是DOI,文献DOI怎么找? 1849371
邀请新用户注册赠送积分活动 913015
科研通“疑难数据库(出版商)”最低求助积分说明 828396