Remote-Sensing Image Usability Assessment Based on ResNet by Combining Edge and Texture Maps

可用性 计算机科学 人工智能 图像质量 失真(音乐) 计算机视觉 图像纹理 卷积神经网络 模式识别(心理学) 图像处理 图像(数学) 计算机网络 人机交互 放大器 带宽(计算)
作者
Lin Xu,Qiang Chen
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:12 (6): 1825-1834 被引量:16
标识
DOI:10.1109/jstars.2019.2914715
摘要

Authentic remote-sensing images suffer non-uniform complex distortions during acquisition, transmission, and storage. Clouds, light, and exposure also affect local quality. This paper constructs a usability-based subjective remote-sensing image dataset and gives a definition of usability for images with non-uniform distortion, where the image usability is determined by the weighted quality of image's blocks. It is difficult to extract the handcraft features from remote-sensing images with complex mixture distortion. Recently, convolutional neural network (CNN) has been introduced into blind quality assessment for images with uniform distortion, which includes feature learning and regression in one processing. In this paper, we first describe and systematically analyze the usability of remote-sensing images in detail. Then, we propose a remote-sensing image usability assessment (RSIUA) method based on a residual network by combining edge and texture maps. The score of remote-sensing image usability was obtained with the weighted averaging of the quality scores of all image blocks, and the weight of each image block was determined by its quality score. We compared the proposed method with three traditional image quality assessment methods, one CNN-based method for images with simulated distortion, and one scale-invariant feature transform-based RSIUA method. The linear correlation coefficient, Spearman's rank ordered correlation coefficient, and root-mean-squared error of experiments demonstrate that our method outperforms all five competitors. The experiments also reveal that the edge and texture maps can improve the performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sunzhuxi发布了新的文献求助10
刚刚
1秒前
2秒前
棠真应助旷野采纳,获得10
2秒前
斯文败类应助章耀楠采纳,获得30
4秒前
SYLH应助J_Jt采纳,获得10
7秒前
10秒前
12秒前
12秒前
12秒前
笨笨金毛发布了新的文献求助10
15秒前
16秒前
萧十一郎完成签到,获得积分10
17秒前
孙达发布了新的文献求助20
17秒前
小蘑菇应助Andyyang117采纳,获得30
17秒前
沉静皮带发布了新的文献求助10
18秒前
19秒前
czh完成签到,获得积分20
19秒前
21秒前
22秒前
22秒前
FashionBoy应助yang采纳,获得10
23秒前
萌萌发布了新的文献求助10
23秒前
风荏完成签到,获得积分10
23秒前
科目三应助梅哈采纳,获得10
23秒前
24秒前
奈斯yl完成签到,获得积分10
27秒前
27秒前
陌生完成签到 ,获得积分10
27秒前
章耀楠发布了新的文献求助30
27秒前
28秒前
31秒前
32秒前
情怀应助echo采纳,获得20
32秒前
在水一方应助月亮上的猫采纳,获得10
33秒前
34秒前
笨笨金毛完成签到 ,获得积分10
35秒前
山川无恙发布了新的文献求助10
36秒前
刘奕欣发布了新的文献求助10
36秒前
ke应助萌萌采纳,获得10
36秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818859
求助须知:如何正确求助?哪些是违规求助? 3361930
关于积分的说明 10414642
捐赠科研通 3080238
什么是DOI,文献DOI怎么找? 1693774
邀请新用户注册赠送积分活动 814597
科研通“疑难数据库(出版商)”最低求助积分说明 768313