Subject-specific EEG channel selection using non-negative matrix factorization for lower-limb motor imagery recognition

运动表象 脑电图 计算机科学 非负矩阵分解 选择(遗传算法) 人工智能 脑-机接口 频道(广播) 语音识别 模式识别(心理学) 基质(化学分析) 矩阵分解 计算机视觉 心理学 神经科学 化学 物理 计算机网络 特征向量 量子力学 色谱法
作者
Dharmendra Gurve,Denis Delisle-Rodríguez,Maria Alejandra Romero-Laiseca,Vivianne Flávia Cardoso,Flávia Aparecida Loterio,Teodiano Bastos-Filho,Sridhar Krishnan
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:17 (2): 026029-026029 被引量:40
标识
DOI:10.1088/1741-2552/ab4dba
摘要

This study aims to propose and validate a subject-specific approach to recognize two different cognitive neural states (relax and pedaling motor imagery (MI)) by selecting the relevant electroencephalogram (EEG) channels. The main aims of the proposed work are: (i) to reduce the computational complexity of the BCI systems during MI detection by selecting the relevant EEG channels, (ii) to reduce the amount of data overfitting that may arise due to unnecessary channels and redundant features, and (iii) to reduce the classification time for real-time BCI applications.The proposed method selects subject-specific EEG channels and features based on their MI. In this work, we make use of non-negative matrix factorization to extract the weight of the EEG channels based on their contribution to MI detection. Further, the neighborhood component analysis is used for subject-specific feature selection.We executed the experiments using EEG signals recorded for MI where ten healthy subjects performed MI movement of the lower limb to generate motor commands. An average accuracy of 96.66%, average true positive rate (TPR) of 97.77%, average false positives rate of 4.44%, and average Kappa of 93.33% were obtained. The proposed subject-specific EEG channel selection based MI recognition system provides 13.20% improvement in detection accuracy, and 27% improvement in Kappa value with less number of EEG channels compared to the results obtained using all EEG channels.The proposed subject-specific BCI system has been found significantly advantageous compared to the typical approach of using a fixed channel configuration. This work shows that fewer EEG channels not only reduce computational complexity and processing time (two times faster) but also improve the MI detection performance. The proposed method selects EEG locations related to the foot movement, which may be relevant for neuro-rehabilitation using lower-limb movements that may provide a real-time and more natural interface between patient and robotic device.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
皮克斯完成签到 ,获得积分10
1秒前
2秒前
2秒前
3秒前
5秒前
qiao发布了新的文献求助20
7秒前
zz发布了新的文献求助10
9秒前
9秒前
9秒前
凉小远完成签到,获得积分10
10秒前
科研通AI5应助只只呀采纳,获得10
10秒前
含蓄半邪应助luca采纳,获得30
11秒前
12秒前
12秒前
1223发布了新的文献求助10
12秒前
Lxjie发布了新的文献求助10
12秒前
冷艳小刺猬完成签到 ,获得积分10
13秒前
cherish发布了新的文献求助10
14秒前
DavidXu发布了新的文献求助10
16秒前
橙子发布了新的文献求助10
17秒前
18秒前
ypppp发布了新的文献求助10
18秒前
阿泽发布了新的文献求助10
18秒前
19秒前
19秒前
不是一只杨完成签到,获得积分10
20秒前
乐观的颦发布了新的文献求助10
21秒前
怡然万声发布了新的文献求助10
22秒前
辣辣发布了新的文献求助10
24秒前
ypppp完成签到,获得积分10
24秒前
25秒前
Lxjie完成签到,获得积分10
27秒前
小马甲应助polarisblue采纳,获得10
27秒前
27秒前
大模型应助PigaChu采纳,获得10
28秒前
DavidXu完成签到,获得积分10
29秒前
阔达幼珊发布了新的文献求助10
31秒前
大模型应助無边采纳,获得10
32秒前
32秒前
CodeCraft应助呆萌的太阳采纳,获得10
36秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
科学教育中的科学本质 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806839
求助须知:如何正确求助?哪些是违规求助? 3351587
关于积分的说明 10354846
捐赠科研通 3067401
什么是DOI,文献DOI怎么找? 1684517
邀请新用户注册赠送积分活动 809780
科研通“疑难数据库(出版商)”最低求助积分说明 765635