Miss Detection vs. False Alarm: Adversarial Learning for Small Object Segmentation in Infrared Images

鉴别器 计算机科学 分割 任务(项目管理) 背景(考古学) 人工智能 假警报 对抗制 目标检测 灵活性(工程) 发电机(电路理论) 对象(语法) 钥匙(锁) 机器学习 模式识别(心理学) 图像分割 探测器 数学 计算机安全 电信 古生物学 功率(物理) 统计 物理 管理 量子力学 经济 生物
作者
Huan Wang,Luping Zhou,Lei Wang
标识
DOI:10.1109/iccv.2019.00860
摘要

A key challenge of infrared small object segmentation (ISOS) is to balance miss detection (MD) and false alarm (FA). This usually needs ``opposite'' strategies to suppress the two terms, and has not been well resolved in the literature. In this paper, we propose a deep adversarial learning framework to improve this situation. Departing from the tradition of jointly reducing MD and FA via a single objective, we decompose this difficult task into two sub-tasks handled by two models trained adversarially, with each focusing on reducing either MD or FA. Such a new design brings forth at least three advantages. First, as each model focuses on a relatively simpler sub-task, the overall difficulty of ISOS is somehow decreased. Second, the adversarial training of the two models naturally produces a delicate balance of MD and FA, and low rates for both MD and FA could be achieved at Nash equilibrium. Third, this MD-FA detachment gives us more flexibility to develop specific models dedicated to each sub-task. To realize the above design, we propose a conditional Generative Adversarial Network comprising of two generators and one discriminator. Each generator strives for one sub-task, while the discriminator differentiates the three segmentation results from the two generators and the ground truth. Moreover, in order to better serve the sub-tasks, the two generators, based on context aggregation networks, utilzse different size of receptive fields, providing both local and global views of objects for segmentation. As verified on multiple infrared image data sets, our method consistently achieves better segmentation than many state-of-the-art ISOS methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
echo完成签到 ,获得积分10
刚刚
傲娇雁风完成签到,获得积分10
刚刚
刚刚
刚刚
刚刚
许飞发布了新的文献求助10
1秒前
爆米花应助lqm采纳,获得10
1秒前
Ycsan完成签到,获得积分10
1秒前
keyan发布了新的文献求助10
3秒前
dd完成签到,获得积分10
3秒前
4秒前
Zhaoyuemeng完成签到 ,获得积分10
4秒前
小兔子乖乖完成签到,获得积分10
4秒前
aaa发布了新的文献求助10
4秒前
onmyway完成签到,获得积分10
5秒前
来都来了发布了新的文献求助10
5秒前
5秒前
passion完成签到,获得积分10
6秒前
单单来迟完成签到,获得积分10
6秒前
Mathea应助zhangsong采纳,获得10
6秒前
7秒前
7秒前
酷波er应助科研通管家采纳,获得10
8秒前
吹雪完成签到,获得积分0
8秒前
大模型应助凶狠的文龙采纳,获得10
8秒前
neverlost6应助科研通管家采纳,获得20
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
酷波er应助wllom采纳,获得10
8秒前
天天快乐应助科研通管家采纳,获得10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
暴躁的马里奥完成签到,获得积分10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
慕青应助科研通管家采纳,获得10
8秒前
9秒前
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
tianxu8822应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5045466
求助须知:如何正确求助?哪些是违规求助? 4274723
关于积分的说明 13325104
捐赠科研通 4088645
什么是DOI,文献DOI怎么找? 2237134
邀请新用户注册赠送积分活动 1244384
关于科研通互助平台的介绍 1172537