A Novel Method for Sleep-Stage Classification Based on Sonification of Sleep Electroencephalogram Signals Using Wavelet Transform and Recurrent Neural Network

语音识别 吉他 脑电图 计算机科学 睡眠(系统调用) 模式识别(心理学) 人工智能 心理学 神经科学 操作系统 经济 管理
作者
Foad Moradi,Hiwa Mohammadi,Mohammad Rezaei,Payam Sariaslani,Nazanin Razazian,Habibolah Khazaie,Hojjat Adeli
出处
期刊:European Neurology [Karger Publishers]
卷期号:83 (5): 468-486 被引量:26
标识
DOI:10.1159/000511306
摘要

<b><i>Introduction:</i></b> Visual sleep-stage scoring is a time-consuming technique that cannot extract the nonlinear characteristics of electroencephalogram (EEG). This article presents a novel method for sleep-stage differentiation based on sonification of sleep-EEG signals using wavelet transform and recurrent neural network (RNN). <b><i>Methods:</i></b> Two RNNs were designed and trained separately based on a database of classical guitar pieces and Kurdish tanbur Makams using a long short-term memory model. Moreover, discrete wavelet transform and wavelet packet decomposition were used to determine the association between the EEG signals and musical pitches. Continuous wavelet transform was applied to extract musical beat-based features from the EEG. Then, the pretrained RNN was used to generate music. To test the proposed model, 11 sleep EEGs were mapped onto the guitar and tanbur frequency intervals and presented to the pretrained RNN. Next, the generated music was randomly presented to 2 neurologists. <b><i>Results:</i></b> The proposed model classified the sleep stages with an accuracy of &#x3e;81% for tanbur and more than 93% for guitar musical pieces. The inter-rater reliability measured by Cohen’s kappa coefficient (<i>κ</i>) revealed good reliability for both tanbur (<i>κ</i> = 0.64, <i>p</i> &#x3c; 0.001) and guitar musical pieces (<i>κ</i> = 0.85, <i>p</i> &#x3c; 0.001). <b><i>Conclusion:</i></b> The present EEG sonification method leads to valid sleep staging by clinicians. The method could be used on various EEG databases for classification, differentiation, diagnosis, and treatment purposes. Real-time EEG sonification can be used as a feedback tool for replanning of neurophysiological functions for the management of many neurological and psychiatric disorders in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助香香香采纳,获得10
刚刚
Hello应助第八号当铺采纳,获得10
刚刚
华仔应助LJW采纳,获得10
1秒前
Akim应助软语采纳,获得10
2秒前
rues011发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
缥缈的冰岚完成签到,获得积分10
4秒前
情怀应助李君君采纳,获得10
5秒前
生动的丸子完成签到,获得积分10
5秒前
7秒前
root发布了新的文献求助10
7秒前
自信的晓霜完成签到,获得积分10
7秒前
wen完成签到,获得积分10
7秒前
7秒前
7秒前
Vera发布了新的文献求助10
7秒前
yyy发布了新的文献求助30
8秒前
8秒前
李健的小迷弟应助颜沛文采纳,获得10
8秒前
8秒前
Lipuer发布了新的文献求助10
9秒前
招水若离发布了新的文献求助10
9秒前
明理的访枫完成签到,获得积分20
9秒前
panmin完成签到,获得积分20
9秒前
10秒前
11秒前
vocrious完成签到,获得积分10
11秒前
greatsnow发布了新的文献求助10
12秒前
12秒前
xiaocai完成签到,获得积分10
12秒前
yang完成签到,获得积分10
13秒前
小马甲应助硕shuo采纳,获得10
13秒前
13秒前
星星科语发布了新的文献求助20
14秒前
15秒前
hs201111完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 560
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5362568
求助须知:如何正确求助?哪些是违规求助? 4492405
关于积分的说明 13987069
捐赠科研通 4395705
什么是DOI,文献DOI怎么找? 2414678
邀请新用户注册赠送积分活动 1407358
关于科研通互助平台的介绍 1381981