Low dose x-ray CT image denoising via U-net in projection domain

计算机科学 人工智能 图像质量 平滑的 降噪 投影(关系代数) 核(代数) 卷积神经网络 计算机视觉 噪音(视频) 特征(语言学) 编码器 残余物 峰值信噪比 模式识别(心理学) 图像(数学) 算法 数学 哲学 组合数学 操作系统 语言学
作者
Xiaofu Song,Linlin Zhu,Xiaoqi Xi,Yu Han,Lei Li,Zhiwei Feng,Mingwan Zhu,Guanyu Kang,Bin Yan
标识
DOI:10.1117/12.2580369
摘要

Low dose computed tomography (LDCT) has attracted considerable interest in medical imaging fields. Reducing tube current intensity and decrease the exposure time are the two main ways in clinic applications. Nevertheless, the resulting statistical noise will seriously degrade CT image quality for diagnosis. To make full use of the original projection data as well as further improving the small dataset processing ability of U-net, this study aimed to investigate a low dose X-ray CT image denoising method via U-net in projection domain (PDI U-net). Meanwhile, in view of avoiding the excessive smoothing of the small structures, the inception module is introduced in the encoding stage of the network. And different convolution kernel operations of 1×1, 3×3, and 5×5 are used in parallel to obtain multi-scale image features, increasing the depth and width of the network while reducing the parameters. Furthermore, the shortcut connection is utilized to transfer the low-level area local detail information to the high-level area. By merging it with the global information of the high-level area, the proposed network can maintain the image details while de-noising. The experimental results show that the method proposed can significantly improve the image quality with clear feature edges and close visual appearance to the reference high dose CT images. Compared with LDCT and Residual Encoder-Decoder Convolutional Neural Network (RED-CNN), the peak signal to noise radio (PSNR) is improved by 9.02dB and 2.74dB, and the structural similarity (SSIM) is improved by 0.43 and 0.07, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
党小波应助熊小子爱学习采纳,获得10
刚刚
1秒前
不落花生发布了新的文献求助10
1秒前
慎独而已发布了新的文献求助10
2秒前
小新完成签到 ,获得积分10
2秒前
无情大地发布了新的文献求助10
2秒前
2秒前
2秒前
迟迟完成签到,获得积分20
2秒前
郝晨晰发布了新的文献求助10
3秒前
3秒前
AAA建材王哥完成签到,获得积分10
4秒前
我是老大应助彻彻采纳,获得10
4秒前
代维健的大黑完成签到,获得积分10
5秒前
maochu发布了新的文献求助10
6秒前
清秀送终发布了新的文献求助10
6秒前
GAO完成签到,获得积分10
6秒前
7秒前
7秒前
慕青应助扶溪筠采纳,获得10
7秒前
万能图书馆应助大喜子采纳,获得10
7秒前
李健应助yeyeye采纳,获得10
7秒前
8秒前
8秒前
悦耳羽毛完成签到,获得积分10
8秒前
11发布了新的文献求助10
8秒前
8秒前
顺顺发布了新的文献求助10
10秒前
打打应助研友_nV2pkn采纳,获得10
10秒前
在水一方应助禾沐采纳,获得10
10秒前
ri_290完成签到,获得积分10
10秒前
爆米花应助彤彤万事通采纳,获得10
12秒前
12秒前
俭朴夜雪完成签到,获得积分10
12秒前
诚心冬亦发布了新的文献求助10
12秒前
期刊应助xuan采纳,获得10
13秒前
打打应助奋斗呀采纳,获得10
13秒前
大壮发布了新的文献求助10
13秒前
沈沈沈屹西完成签到,获得积分10
13秒前
kjding完成签到,获得积分10
14秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Parallel Optimization 200
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835693
求助须知:如何正确求助?哪些是违规求助? 3378029
关于积分的说明 10501900
捐赠科研通 3097669
什么是DOI,文献DOI怎么找? 1705937
邀请新用户注册赠送积分活动 820760
科研通“疑难数据库(出版商)”最低求助积分说明 772260