自动对焦
计算机科学
人工智能
任务(项目管理)
基线(sea)
编码(集合论)
机器学习
深度学习
模式识别(心理学)
光学(聚焦)
海洋学
物理
管理
集合(抽象数据类型)
光学
经济
程序设计语言
地质学
作者
Charles Herrmann,Richard Strong Bowen,Neal Wadhwa,Rahul Garg,Qiurui He,Jonathan T. Barron,Ramin Zabih
标识
DOI:10.1109/cvpr42600.2020.00230
摘要
Autofocus is an important task for digital cameras, yet current approaches often exhibit poor performance. We propose a learning-based approach to this problem, and provide a realistic dataset of sufficient size for effective learning. Our dataset is labeled with per-pixel depths obtained from multi-view stereo, following [9]. Using this dataset, we apply modern deep classification models and an ordinal regression loss to obtain an efficient learning-based autofocus technique. We demonstrate that our approach provides a significant improvement compared with previous learned and non-learned methods: our model reduces the mean absolute error by a factor of 3.6 over the best comparable baseline algorithm. Our dataset and code are publicly available.
科研通智能强力驱动
Strongly Powered by AbleSci AI