A Noise-Robust Framework for Automatic Segmentation of COVID-19 Pneumonia Lesions From CT Images

分割 稳健性(进化) 计算机科学 掷骰子 人工智能 噪音(视频) Sørensen–骰子系数 图像分割 模式识别(心理学) 计算机视觉 机器学习 图像(数学) 数学 统计 化学 基因 生物化学
作者
Guotai Wang,Xinglong Liu,Chaoping Li,Zhiyong Xu,Jiugen Ruan,Haifeng Zhu,Tao Meng,Kang Li,Ning Huang,Shaoting Zhang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (8): 2653-2663 被引量:459
标识
DOI:10.1109/tmi.2020.3000314
摘要

Segmentation of pneumonia lesions from CT scans of COVID-19 patients is important for accurate diagnosis and follow-up. Deep learning has a potential to automate this task but requires a large set of high-quality annotations that are difficult to collect. Learning from noisy training labels that are easier to obtain has a potential to alleviate this problem. To this end, we propose a novel noise-robust framework to learn from noisy labels for the segmentation task. We first introduce a noise-robust Dice loss that is a generalization of Dice loss for segmentation and Mean Absolute Error (MAE) loss for robustness against noise, then propose a novel COVID-19 Pneumonia Lesion segmentation network (COPLE-Net) to better deal with the lesions with various scales and appearances. The noise-robust Dice loss and COPLE-Net are combined with an adaptive self-ensembling framework for training, where an Exponential Moving Average (EMA) of a student model is used as a teacher model that is adaptively updated by suppressing the contribution of the student to EMA when the student has a large training loss. The student model is also adaptive by learning from the teacher only when the teacher outperforms the student. Experimental results showed that: (1) our noise-robust Dice loss outperforms existing noise-robust loss functions, (2) the proposed COPLE-Net achieves higher performance than state-of-the-art image segmentation networks, and (3) our framework with adaptive self-ensembling significantly outperforms a standard training process and surpasses other noise-robust training approaches in the scenario of learning from noisy labels for COVID-19 pneumonia lesion segmentation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
乐乐应助标致橘子采纳,获得10
1秒前
浮游应助Lutras采纳,获得10
1秒前
1秒前
1秒前
年轻的觅风完成签到,获得积分10
2秒前
liuliu完成签到,获得积分10
2秒前
2秒前
2秒前
Jasper应助一颗梨采纳,获得10
4秒前
大宋宋完成签到,获得积分10
4秒前
我是老大应助kellyH采纳,获得10
4秒前
4秒前
mm发布了新的文献求助10
4秒前
5秒前
able应助wenyuLuo采纳,获得30
6秒前
yangzhen发布了新的文献求助10
6秒前
朴实思春发布了新的文献求助10
6秒前
7秒前
cm发布了新的文献求助10
7秒前
M.发布了新的文献求助10
7秒前
7秒前
干净寻冬完成签到 ,获得积分10
8秒前
9秒前
zy发布了新的文献求助10
9秒前
超级金针菇完成签到,获得积分10
10秒前
imshao发布了新的文献求助10
10秒前
wxj发布了新的文献求助10
10秒前
微笑的巧蕊完成签到 ,获得积分10
10秒前
抹茶苔藓完成签到,获得积分10
10秒前
小朱完成签到 ,获得积分10
11秒前
丹麦曲奇发布了新的文献求助30
11秒前
12秒前
YM完成签到,获得积分10
12秒前
何小抽发布了新的文献求助10
13秒前
zhou默完成签到,获得积分10
13秒前
13秒前
一颗梨完成签到,获得积分10
13秒前
汉堡包应助忐忑的尔容采纳,获得10
14秒前
外向凡松发布了新的文献求助10
14秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5340709
求助须知:如何正确求助?哪些是违规求助? 4477046
关于积分的说明 13933849
捐赠科研通 4372955
什么是DOI,文献DOI怎么找? 2402666
邀请新用户注册赠送积分活动 1395551
关于科研通互助平台的介绍 1367628