Comparison of Accuracy Level of Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) Algorithms in Predicting Heart Disease

支持向量机 模式识别(心理学) k-最近邻算法 人工智能 计算机科学 算法 机器学习
作者
Dimas Aryo Anggoro
出处
期刊:International journal of emerging trends in engineering research [The World Academy of Research in Science and Engineering]
卷期号:8 (5): 1689-1694 被引量:37
标识
DOI:10.30534/ijeter/2020/32852020
摘要

Heart disease receives a lot of attention in medical research because of its great effect on the human health state.Based on cases in 2008, it was estimated that more than 3 million deaths were caused due to heart disease.This study aims to compare two algorithms and find which algorithm can be utilized appropriately in predicting the accuracy of heart disease data and has the benefit to consider the health problems regarding the percentage of heart disease as well as being an accurate information material.This study used a comparison of the Support Vector Machine (SVM) algorithm and the K-Nearest Neighbor (KNN) algorithm.The method used is the Classification method, one of the techniques in Machine Learning, to find parameters in a linear equation that can map inputs and outputs.The results show that the SVM algorithm testing with normalization had better accuracy results compared to KNN algorithm either with or without normalization continued to produce poor accuracy.The SVM classification results without normalization were 84.61% and with normalization was 90.10%, while the KNN algorithm showed an accuracy of 64.83% and 81.31% with normalization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助秋思冬念采纳,获得10
1秒前
Hindiii完成签到,获得积分10
1秒前
3秒前
yuancw完成签到 ,获得积分10
3秒前
动力小滋完成签到,获得积分10
3秒前
Getlogger完成签到,获得积分10
4秒前
青竹完成签到,获得积分10
6秒前
群山完成签到 ,获得积分10
6秒前
7秒前
stszd完成签到,获得积分10
8秒前
刘华银完成签到,获得积分10
9秒前
momo完成签到,获得积分10
9秒前
zz发布了新的文献求助10
9秒前
平凡完成签到,获得积分10
10秒前
waws完成签到,获得积分10
11秒前
刘华银发布了新的文献求助10
12秒前
14秒前
xuhang完成签到,获得积分10
14秒前
syy发布了新的文献求助10
14秒前
Yara.H完成签到 ,获得积分10
15秒前
油个大饼呜呜呜完成签到,获得积分20
18秒前
巨人的背影完成签到,获得积分10
19秒前
时光轴发布了新的文献求助10
19秒前
gc完成签到 ,获得积分10
21秒前
山海之间完成签到,获得积分10
21秒前
22秒前
明理平文完成签到 ,获得积分10
26秒前
地表飞猪应助木木采纳,获得10
26秒前
在水一方应助闪闪的发夹采纳,获得10
27秒前
Halo完成签到,获得积分10
27秒前
RXY完成签到,获得积分10
29秒前
友好的牛排完成签到,获得积分10
31秒前
布曲完成签到 ,获得积分10
34秒前
科研顺利完成签到 ,获得积分10
36秒前
端庄千琴完成签到,获得积分10
36秒前
淡淡猎豹完成签到,获得积分0
37秒前
XIEMIN完成签到,获得积分10
38秒前
Adian完成签到,获得积分10
40秒前
genova完成签到,获得积分10
40秒前
传奇3应助ann采纳,获得30
40秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843360
求助须知:如何正确求助?哪些是违规求助? 3385634
关于积分的说明 10541521
捐赠科研通 3106291
什么是DOI,文献DOI怎么找? 1710911
邀请新用户注册赠送积分活动 823870
科研通“疑难数据库(出版商)”最低求助积分说明 774351