Computational Prediction of Ubiquitination Proteins Using Evolutionary Profiles and Functional Domain Annotation

泛素 计算生物学 计算机科学 领域(数学分析) 生物信息学 生物 生物化学 数学 基因 数学分析
作者
Wang‐Ren Qiu,Chunhui Xu,Xuan Xiao,Dong Xu
出处
期刊:Current Genomics [Bentham Science Publishers]
卷期号:20 (5): 389-399 被引量:14
标识
DOI:10.2174/1389202919666191014091250
摘要

Ubiquitination, as a post-translational modification, is a crucial biological process in cell signaling, apoptosis, and localization. Identification of ubiquitination proteins is of fundamental importance for understanding the molecular mechanisms in biological systems and diseases. Although high-throughput experimental studies using mass spectrometry have identified many ubiquitination proteins and ubiquitination sites, the vast majority of ubiquitination proteins remain undiscovered, even in well-studied model organisms.To reduce experimental costs, computational methods have been introduced to predict ubiquitination sites, but the accuracy is unsatisfactory. If it can be predicted whether a protein can be ubiquitinated or not, it will help in predicting ubiquitination sites. However, all the computational methods so far can only predict ubiquitination sites.In this study, the first computational method for predicting ubiquitination proteins without relying on ubiquitination site prediction has been developed. The method extracts features from sequence conservation information through a grey system model, as well as functional domain annotation and subcellular localization.Together with the feature analysis and application of the relief feature selection algorithm, the results of 5-fold cross-validation on three datasets achieved a high accuracy of 90.13%, with Matthew's correlation coefficient of 80.34%. The predicted results on an independent test data achieved 87.71% as accuracy and 75.43% of Matthew's correlation coefficient, better than the prediction from the best ubiquitination site prediction tool available.Our study may guide experimental design and provide useful insights for studying the mechanisms and modulation of ubiquitination pathways. The code is available at: https://github.com/Chunhuixu/UBIPredic_QWRCHX.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
666完成签到,获得积分10
1秒前
高级后勤完成签到,获得积分10
1秒前
lindoudou完成签到,获得积分10
1秒前
向阳花完成签到,获得积分10
1秒前
1秒前
会爬树的鱼完成签到,获得积分10
2秒前
3秒前
小茗同学完成签到,获得积分10
3秒前
披萨好吃酱完成签到 ,获得积分10
4秒前
古几嘎完成签到 ,获得积分10
4秒前
Orange应助springwyc采纳,获得10
4秒前
菠萝蜜发布了新的文献求助10
4秒前
王梦秋完成签到 ,获得积分10
5秒前
6秒前
诚心的毛豆完成签到,获得积分10
6秒前
Hilda007应助研友_8Y05PZ采纳,获得10
7秒前
沉心望星海完成签到,获得积分10
9秒前
玉昆完成签到 ,获得积分10
9秒前
嘟嘟完成签到 ,获得积分10
9秒前
执着的忆雪完成签到,获得积分10
9秒前
呆熊发布了新的文献求助10
10秒前
蒋若风完成签到,获得积分10
10秒前
10秒前
随意了么完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
DOUBLE完成签到,获得积分10
12秒前
努力学习才能找到工作完成签到 ,获得积分10
13秒前
CodeCraft应助jscr采纳,获得10
14秒前
Liuruijia完成签到 ,获得积分10
14秒前
fawr完成签到 ,获得积分10
15秒前
失眠的血茗完成签到,获得积分10
15秒前
nglmy77完成签到 ,获得积分10
15秒前
CA274ABTFY完成签到,获得积分10
16秒前
16秒前
RYAN完成签到 ,获得积分10
16秒前
matsuri发布了新的文献求助10
16秒前
16秒前
李爱国应助XYY采纳,获得10
17秒前
hhl完成签到,获得积分10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079796
求助须知:如何正确求助?哪些是违规求助? 4297897
关于积分的说明 13389149
捐赠科研通 4121238
什么是DOI,文献DOI怎么找? 2257068
邀请新用户注册赠送积分活动 1261339
关于科研通互助平台的介绍 1195451