Improved Neural Signal Classification in a Rapid Serial Visual Presentation Task Using Active Learning

计算机科学 脑-机接口 分类器(UML) 可视化快速呈现 可用性 人工智能 机器学习 任务(项目管理) 校准 可视化 接口(物质) 脑电图 模式识别(心理学) 人机交互 感知 气泡 心理学 生物 数学 并行计算 管理 最大气泡压力法 神经科学 统计 经济 精神科
作者
Amar R. Marathe,Vernon J. Lawhern,Dongrui Wu,David Slayback,Brent J. Lance
出处
期刊:IEEE Transactions on Neural Systems and Rehabilitation Engineering [Institute of Electrical and Electronics Engineers]
卷期号:24 (3): 333-343 被引量:66
标识
DOI:10.1109/tnsre.2015.2502323
摘要

The application space for brain-computer interface (BCI) technologies is rapidly expanding with improvements in technology. However, most real-time BCIs require extensive individualized calibration prior to use, and systems often have to be recalibrated to account for changes in the neural signals due to a variety of factors including changes in human state, the surrounding environment, and task conditions. Novel approaches to reduce calibration time or effort will dramatically improve the usability of BCI systems. Active Learning (AL) is an iterative semi-supervised learning technique for learning in situations in which data may be abundant, but labels for the data are difficult or expensive to obtain. In this paper, we apply AL to a simulated BCI system for target identification using data from a rapid serial visual presentation (RSVP) paradigm to minimize the amount of training samples needed to initially calibrate a neural classifier. Our results show AL can produce similar overall classification accuracy with significantly less labeled data (in some cases less than 20%) when compared to alternative calibration approaches. In fact, AL classification performance matches performance of 10-fold cross-validation (CV) in over 70% of subjects when training with less than 50% of the data. To our knowledge, this is the first work to demonstrate the use of AL for offline electroencephalography (EEG) calibration in a simulated BCI paradigm. While AL itself is not often amenable for use in real-time systems, this work opens the door to alternative AL-like systems that are more amenable for BCI applications and thus enables future efforts for developing highly adaptive BCI systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
我是老大应助俊俊采纳,获得10
1秒前
基础题发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
1秒前
阮梽珅完成签到,获得积分10
2秒前
wangle_17完成签到,获得积分10
2秒前
2秒前
笛卡尔完成签到,获得积分10
2秒前
3秒前
3秒前
无敌山竹完成签到,获得积分10
3秒前
4秒前
XCY完成签到,获得积分20
4秒前
零灵8023完成签到,获得积分10
4秒前
阮梽珅发布了新的文献求助20
5秒前
东山发布了新的文献求助10
5秒前
科研通AI6.1应助richael采纳,获得10
6秒前
斯文败类应助0001采纳,获得10
6秒前
meng发布了新的文献求助10
6秒前
wangle_17发布了新的文献求助30
6秒前
充电宝应助来一桶微笑采纳,获得10
7秒前
7秒前
jyh发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
7秒前
zengtx1发布了新的文献求助10
8秒前
8秒前
搜集达人应助风趣心情采纳,获得10
8秒前
顺利的绿柏完成签到,获得积分10
9秒前
左南风发布了新的文献求助10
9秒前
lichaofan发布了新的文献求助30
9秒前
飘逸代双完成签到,获得积分10
10秒前
richael完成签到,获得积分10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776395
求助须知:如何正确求助?哪些是违规求助? 5629084
关于积分的说明 15442414
捐赠科研通 4908542
什么是DOI,文献DOI怎么找? 2641276
邀请新用户注册赠送积分活动 1589232
关于科研通互助平台的介绍 1543882