人工神经网络
西尔维斯特方程
循环神经网络
计算机科学
稳健性(进化)
西尔维斯特矩阵
微分方程
趋同(经济学)
应用数学
代数数
数学
控制理论(社会学)
人工智能
控制(管理)
数学分析
矩阵多项式
基因
多项式矩阵
物理
化学
生物化学
多项式的
特征向量
量子力学
经济
经济增长
作者
Zhijun Zhang,Lunan Zheng,Jian Weng,Yijun Mao,Wei Lu,Lin Xiao
标识
DOI:10.1109/tcyb.2017.2760883
摘要
Solving Sylvester equation is a common algebraic problem in mathematics and control theory. Different from the traditional fixed-parameter recurrent neural networks, such as gradient-based recurrent neural networks or Zhang neural networks, a novel varying-parameter recurrent neural network, [called varying-parameter convergent-differential neural network (VP-CDNN)] is proposed in this paper for obtaining the online solution to the time-varying Sylvester equation. With time passing by, this kind of new varying-parameter neural network can achieve super-exponential performance. Computer simulation comparisons between the fixed-parameter neural networks and the proposed VP-CDNN via using different kinds of activation functions demonstrate that the proposed VP-CDNN has better convergence and robustness properties.
科研通智能强力驱动
Strongly Powered by AbleSci AI