化学
复分解
组合化学
铋
金属有机骨架
纳米技术
有机化学
聚合
吸附
材料科学
聚合物
作者
Zhengsheng Qin,Wen‐Wen Dong,Jun Zhao,Ya‐Pan Wu,Zhengfang Tian,Qichun Zhang,Dong‐Sheng Li
标识
DOI:10.1002/ejic.201701339
摘要
It is essential to develop new effective sensor materials for the detection of antibiotics and organic explosives, due to their negative impacts on ecosystems and human health. In this work, guided by an in situ metal‐node metathesis approach, a fluorescent metal–organic gel [MOG(Eu) gel] has been synthesized for the first time by metal‐ion exchange between Eu 3+ and Al 3+ in the nonfluorescent MOG(Al) gel. More importantly, the postsynthetic MOG(Eu) xerogel shows remarkable selective detection ability towards ronidazole (RDZ), ornidazole (ODZ), metronidazole (MDZ), and dimetridazole (DTZ) antibiotics, as well as 4‐nitrophenol (4‐NP), with low detection limits of 1.205, 0.542, 0.999, 0.377, and 1.582 ppm, respectively. The high quenching efficiencies can be attributed to the decrease of effective energy transfer in the host–guest systems. The strategy of metathesis opens up new opportunities for synthetic methods and functional applications in MOGs materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI