Joint analysis of input and parametric uncertainties in watershed water quality modeling: A formal Bayesian approach

马尔科夫蒙特卡洛 计算机科学 贝叶斯概率 参数统计 贝叶斯推理 不确定度分析 不确定度量化 统计 数学 机器学习 人工智能 模拟
作者
Feng Han,Yi Zheng
出处
期刊:Advances in Water Resources [Elsevier BV]
卷期号:116: 77-94 被引量:33
标识
DOI:10.1016/j.advwatres.2018.04.006
摘要

Significant Input uncertainty is a major source of error in watershed water quality (WWQ) modeling. It remains challenging to address the input uncertainty in a rigorous Bayesian framework. This study develops the Bayesian Analysis of Input and Parametric Uncertainties (BAIPU), an approach for the joint analysis of input and parametric uncertainties through a tight coupling of Markov Chain Monte Carlo (MCMC) analysis and Bayesian Model Averaging (BMA). The formal likelihood function for this approach is derived considering a lag-1 autocorrelated, heteroscedastic, and Skew Exponential Power (SEP) distributed error model. A series of numerical experiments were performed based on a synthetic nitrate pollution case and on a real study case in the Newport Bay Watershed, California. The Soil and Water Assessment Tool (SWAT) and Differential Evolution Adaptive Metropolis (DREAM(ZS)) were used as the representative WWQ model and MCMC algorithm, respectively. The major findings include the following: (1) the BAIPU can be implemented and used to appropriately identify the uncertain parameters and characterize the predictive uncertainty; (2) the compensation effect between the input and parametric uncertainties can seriously mislead the modeling based management decisions, if the input uncertainty is not explicitly accounted for; (3) the BAIPU accounts for the interaction between the input and parametric uncertainties and therefore provides more accurate calibration and uncertainty results than a sequential analysis of the uncertainties; and (4) the BAIPU quantifies the credibility of different input assumptions on a statistical basis and can be implemented as an effective inverse modeling approach to the joint inference of parameters and inputs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韩可昕完成签到 ,获得积分10
1秒前
小魔鬼发布了新的文献求助10
1秒前
韩soso发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助50
2秒前
bobo发布了新的文献求助10
2秒前
小蘑菇应助迷路的初柔采纳,获得10
2秒前
小鲤鱼发布了新的文献求助10
2秒前
大模型应助小黑采纳,获得10
3秒前
3秒前
3秒前
韩可昕关注了科研通微信公众号
4秒前
852应助红白刀向前冲采纳,获得10
5秒前
5秒前
笨笨的初露完成签到,获得积分20
6秒前
研友_Lw4kGn发布了新的文献求助10
7秒前
8秒前
8秒前
852应助pocky采纳,获得10
9秒前
科研通AI5应助愤怒的小之采纳,获得10
9秒前
recovery发布了新的文献求助30
10秒前
共享精神应助杨诚采纳,获得10
10秒前
Chu_JH完成签到,获得积分10
10秒前
11秒前
11秒前
tao完成签到,获得积分10
11秒前
14秒前
迟到翘课翘完成签到 ,获得积分10
14秒前
科研废物发布了新的文献求助10
16秒前
科研通AI6应助笨笨的初露采纳,获得10
16秒前
16秒前
万能图书馆应助lpf采纳,获得10
17秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
19秒前
武婧完成签到,获得积分10
19秒前
Cino发布了新的文献求助10
20秒前
张锐斌完成签到,获得积分10
20秒前
NexusExplorer应助朱旭采纳,获得10
20秒前
22秒前
科研通AI6应助青年才俊采纳,获得30
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075569
求助须知:如何正确求助?哪些是违规求助? 4295278
关于积分的说明 13384033
捐赠科研通 4116979
什么是DOI,文献DOI怎么找? 2254606
邀请新用户注册赠送积分活动 1259239
关于科研通互助平台的介绍 1192002