亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Joint analysis of input and parametric uncertainties in watershed water quality modeling: A formal Bayesian approach

马尔科夫蒙特卡洛 计算机科学 贝叶斯概率 参数统计 贝叶斯推理 不确定度分析 不确定度量化 统计 数学 机器学习 人工智能 模拟
作者
Feng Han,Yi Zheng
出处
期刊:Advances in Water Resources [Elsevier BV]
卷期号:116: 77-94 被引量:33
标识
DOI:10.1016/j.advwatres.2018.04.006
摘要

Significant Input uncertainty is a major source of error in watershed water quality (WWQ) modeling. It remains challenging to address the input uncertainty in a rigorous Bayesian framework. This study develops the Bayesian Analysis of Input and Parametric Uncertainties (BAIPU), an approach for the joint analysis of input and parametric uncertainties through a tight coupling of Markov Chain Monte Carlo (MCMC) analysis and Bayesian Model Averaging (BMA). The formal likelihood function for this approach is derived considering a lag-1 autocorrelated, heteroscedastic, and Skew Exponential Power (SEP) distributed error model. A series of numerical experiments were performed based on a synthetic nitrate pollution case and on a real study case in the Newport Bay Watershed, California. The Soil and Water Assessment Tool (SWAT) and Differential Evolution Adaptive Metropolis (DREAM(ZS)) were used as the representative WWQ model and MCMC algorithm, respectively. The major findings include the following: (1) the BAIPU can be implemented and used to appropriately identify the uncertain parameters and characterize the predictive uncertainty; (2) the compensation effect between the input and parametric uncertainties can seriously mislead the modeling based management decisions, if the input uncertainty is not explicitly accounted for; (3) the BAIPU accounts for the interaction between the input and parametric uncertainties and therefore provides more accurate calibration and uncertainty results than a sequential analysis of the uncertainties; and (4) the BAIPU quantifies the credibility of different input assumptions on a statistical basis and can be implemented as an effective inverse modeling approach to the joint inference of parameters and inputs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
我是老大应助gecheng采纳,获得10
2秒前
5秒前
TY发布了新的文献求助10
5秒前
乐乐应助心灵采纳,获得10
8秒前
yin发布了新的文献求助10
10秒前
10秒前
13秒前
小二郎应助zjh采纳,获得10
14秒前
20秒前
和谐诗双完成签到 ,获得积分10
21秒前
钮钴禄甄嬛完成签到,获得积分20
23秒前
zjh发布了新的文献求助10
25秒前
CodeCraft应助钮钴禄甄嬛采纳,获得10
28秒前
zchchem应助沉默寄风采纳,获得30
29秒前
CipherSage应助你在烦恼什么采纳,获得30
37秒前
dida完成签到,获得积分10
37秒前
38秒前
41秒前
不去明知山完成签到 ,获得积分10
44秒前
45秒前
46秒前
bkagyin应助热心小松鼠采纳,获得10
47秒前
CodeCraft应助热心小松鼠采纳,获得10
47秒前
无花果应助热心小松鼠采纳,获得10
47秒前
科研通AI5应助热心小松鼠采纳,获得10
47秒前
思源应助热心小松鼠采纳,获得10
47秒前
开朗的大叔完成签到,获得积分10
47秒前
科研通AI5应助热心小松鼠采纳,获得10
47秒前
Orange应助热心小松鼠采纳,获得10
47秒前
科研通AI5应助热心小松鼠采纳,获得10
47秒前
科研通AI5应助热心小松鼠采纳,获得10
47秒前
张亚博发布了新的文献求助10
49秒前
moon发布了新的文献求助10
49秒前
Sou完成签到 ,获得积分10
50秒前
Perion完成签到 ,获得积分10
56秒前
tzjz_zrz完成签到,获得积分10
57秒前
寒冷的迎梦完成签到,获得积分10
58秒前
科目三应助moon采纳,获得10
1分钟前
yin完成签到,获得积分10
1分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Diagnostic Imaging: Pediatric Neuroradiology 2000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 720
Battery Management Systems, Volume lll: Physics-Based Methods 550
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4136028
求助须知:如何正确求助?哪些是违规求助? 3672730
关于积分的说明 11611346
捐赠科研通 3368235
什么是DOI,文献DOI怎么找? 1850334
邀请新用户注册赠送积分活动 913772
科研通“疑难数据库(出版商)”最低求助积分说明 828910