Multi-Object Tracking in Satellite Videos With Graph-Based Multitask Modeling

计算机科学 BitTorrent跟踪器 视频跟踪 人工智能 图形 计算机视觉 目标检测 对象(语法) 跟踪(教育) 可视化 眼动 模式识别(心理学) 理论计算机科学 心理学 教育学
作者
Qibin He,Xian Sun,Zhiyuan Yan,Beibei Li,Kun Fu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:83
标识
DOI:10.1109/tgrs.2022.3152250
摘要

Recently, satellite video has become an emerging means of earth observation, providing the possibility of tracking moving objects. However, the existing multi-object trackers are commonly designed for natural scenes without considering the characteristics of remotely sensed data. In addition, most trackers are composed of two independent stages of detection and reidentification (ReID), which means that they cannot be mutually promoted. To this end, we propose an end-to-end online framework, which is called TGraM, for multi-object tracking in satellite videos. It models multi-object tracking as a graph information reasoning procedure from the multitask learning perspective. Specifically, a graph-based spatiotemporal reasoning module is presented to mine the potential high-order correlations between video frames. Furthermore, considering the inconsistency of optimization objectives between detection and ReID, a multitask gradient adversarial learning strategy is designed to regularize each task-specific network. In addition, aiming at the data scarcity in this field, a large-scale and high-resolution Jilin-1 satellite video dataset for multi-object tracking (AIR-MOT) is built for the experiments. Compared with state-of-the-art multi-object trackers, TGraM achieves efficient collaborative learning between detection and ReID, improving the tracking accuracy by 1.2 multiple object tracking accuracy. The code and dataset will be available online ( https://github.com/HeQibin/TGraM ).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
语上发布了新的文献求助30
刚刚
frozen完成签到,获得积分10
1秒前
大白菜发布了新的文献求助10
1秒前
coolkid应助罗亚亚采纳,获得10
3秒前
ps完成签到,获得积分10
4秒前
5秒前
拾荒者完成签到,获得积分10
10秒前
嗯呢完成签到,获得积分10
10秒前
乐宝完成签到,获得积分10
11秒前
13秒前
花开完成签到,获得积分10
15秒前
15秒前
16秒前
陌上尘发布了新的文献求助10
17秒前
缥缈的松鼠完成签到 ,获得积分10
17秒前
Lionking完成签到,获得积分10
19秒前
花开发布了新的文献求助10
21秒前
joker完成签到,获得积分10
21秒前
呆呆发布了新的文献求助10
21秒前
22秒前
大模型应助沉静的龙猫采纳,获得10
22秒前
angelsknight发布了新的文献求助30
22秒前
22秒前
1啊哈哈哈3完成签到,获得积分10
23秒前
二小完成签到 ,获得积分10
23秒前
陌上尘完成签到,获得积分10
24秒前
科研通AI5应助枔怡采纳,获得30
25秒前
美丽的凌蝶完成签到,获得积分10
27秒前
SYLH应助科研通管家采纳,获得10
28秒前
852应助科研通管家采纳,获得10
28秒前
陶醉的大白完成签到 ,获得积分10
28秒前
嘿嘿哈完成签到,获得积分10
28秒前
maox1aoxin应助科研通管家采纳,获得30
29秒前
SYLH应助科研通管家采纳,获得10
29秒前
852应助科研通管家采纳,获得10
29秒前
许甜甜鸭应助科研通管家采纳,获得20
29秒前
SYLH应助科研通管家采纳,获得10
29秒前
wzswzs完成签到,获得积分10
29秒前
Akim应助科研通管家采纳,获得10
29秒前
Orange应助科研通管家采纳,获得10
29秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838497
求助须知:如何正确求助?哪些是违规求助? 3380812
关于积分的说明 10516014
捐赠科研通 3100441
什么是DOI,文献DOI怎么找? 1707496
邀请新用户注册赠送积分活动 821784
科研通“疑难数据库(出版商)”最低求助积分说明 772947