An action recognition method for manual acupuncture techniques using a tactile array finger cot

针灸科 人工智能 分类器(UML) 计算机科学 模式识别(心理学) 特征提取 医学 病理 替代医学
作者
Chong Su,Chen Wang,Shengyi Gou,Jie Chen,Wenchao Tang,Cun‐Zhi Liu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:148: 105827-105827 被引量:10
标识
DOI:10.1016/j.compbiomed.2022.105827
摘要

The current measurement systems for the physical parameters (rotation frequency, and amplitude) of Traditional Chinese Medicine (TCM) manual acupuncture tend to cause disturbance and inconvenience in clinical application and do not accurately capture the tactile signals from the physician's finger during manual acupuncture operations. In addition, the literature rarely discusses classification of the four basic manual acupuncture techniques (reinforcing by twirling and rotating (RFTR), reducing by twirling and rotating (RDTR), reinforcing by lifting and thrusting (RFLT), and reducing by lifting and thrusting (RDLT)). To address this problem, we developed a multi-PVDF film-based tactile array finger cot to collect piezoelectric signals from the acupuncturist's finger-needle contact during manual acupuncture operations. In order to recognize the four typical TCM manual acupuncture techniques, we developed a method to capture piezoelectric signals in related "windows" and subsequently extract features to model acupuncture techniques. Next, we created an ensemble learning-based action classifier for manual acupuncture technique recognition. Finally, the proposed classifier was employed to recognize the four types of manual acupuncture techniques performed by 15 TCM physicians based on the piezoelectric signals collected using the tactile array finger cot. Among all the approaches, our proposed feature-based CatBoost ensemble learning model achieved the highest validation accuracy of 99.63% and the highest test accuracy of 92.45%. Moreover, we provide the efficiency and limitations of using this action recognition method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赐梦完成签到 ,获得积分10
1秒前
小二郎应助Dream采纳,获得10
1秒前
chen123发布了新的文献求助10
3秒前
爆米花应助时来运转采纳,获得10
4秒前
852应助爱听歌笑寒采纳,获得10
4秒前
可爱的石头完成签到,获得积分10
4秒前
独孤蚕完成签到,获得积分10
4秒前
6秒前
6秒前
6秒前
8秒前
初余发布了新的文献求助10
9秒前
lida发布了新的文献求助10
10秒前
11秒前
chen123完成签到,获得积分10
11秒前
11秒前
13秒前
orixero应助sniffgo采纳,获得10
14秒前
yy发布了新的文献求助10
15秒前
归尘发布了新的文献求助10
16秒前
GHOMON发布了新的文献求助10
19秒前
小超完成签到,获得积分10
21秒前
今天签到了吗完成签到 ,获得积分10
27秒前
yy完成签到,获得积分10
29秒前
GHOMON完成签到,获得积分10
29秒前
在水一方应助初余采纳,获得10
30秒前
ffeiffei发布了新的文献求助10
33秒前
33秒前
Nuyoah完成签到,获得积分20
36秒前
Dandelion完成签到,获得积分10
38秒前
yang完成签到,获得积分10
39秒前
欣慰雪巧完成签到 ,获得积分10
41秒前
REBECCA完成签到 ,获得积分10
41秒前
43秒前
科研通AI5应助LUMOS采纳,获得30
44秒前
44秒前
汉堡包应助卿年采纳,获得10
45秒前
kk完成签到,获得积分10
46秒前
46秒前
48秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Ricci Solitons in Dimensions 4 and Higher 450
the WHO Classification of Head and Neck Tumors (5th Edition) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4777811
求助须知:如何正确求助?哪些是违规求助? 4108948
关于积分的说明 12710755
捐赠科研通 3830833
什么是DOI,文献DOI怎么找? 2113107
邀请新用户注册赠送积分活动 1136684
关于科研通互助平台的介绍 1020727