Computational atomic‐scale design and experimental verification for layered double hydroxide as an efficient alkaline oxygen evolution reaction catalyst

过电位 析氧 分解水 层状双氢氧化物 催化作用 电催化剂 三元运算 氢氧化物 无机化学 碱性水电解 材料科学 电解水 化学 制氢 化学工程 电解 电解质 电化学 冶金 物理化学 计算机科学 电极 工程类 光催化 生物化学 程序设计语言
作者
Sun Young Jung,Kang Min Kim,Sungwook Mhin,Young‐Kwang Kim,Jeong Ho Ryu,Enkhbayar Enkhtuvshin,So Jung Kim,Nguyen Thi Thu Thao,Seunggun Choi,Taeseup Song,HyukSu Han
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:46 (9): 11972-11988 被引量:2
标识
DOI:10.1002/er.7965
摘要

Electrochemical water splitting is one of the most efficient techniques to produce hydrogen in an environmentally friendly way. However, a sluggish anodic reaction, namely oxygen evolution reaction (OER), requires the use of an efficient electrocatalyst for achieving economic hydrogen production. Transition-metal-based layered double hydroxides (LDHs) are promising electrocatalysts for reducing the overpotential of OER in alkaline electrolyte, which is essential for efficient water electrolysis. Nickel-iron-based LDHs (Ni-Fe LDH) have been regarded as the best OER electrocatalysts under alkaline conditions. Hence, a number of research studies have been conducted on further improving the electrocatalytic performance of Ni-Fe LDH. Although the chemical blending of other transition metals with Ni-Fe-LDH is a simple and reliable strategy to enhance the OER activity of Ni-Fe-LDH, a systematic investigation on designing Ni-Fe-LDH with different additional elements is still lacking. In addition, the design of multi-metallic LDH compound via only experimental method is very costly and time-consuming process. In this study, atomic-scale computational and experimental studies are performed to design OER electrocatalysts including unary, binary, and ternary LDH compounds consisting of Ni, Fe, Al, and Co. Density functional theory calculations predict that Ni-Fe-Co ternary LDH can lead to the lowest overpotential for alkaline OER among various computationally modeled LDH systems. Further, experimental verifications successfully demonstrate the computational prediction wherein Ni-Fe-Co-LDH exhibits superior catalytic performance compared with Ni-Fe-LDH and benchmark IrO2 catalysts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助大力洋葱采纳,获得10
刚刚
1秒前
tian完成签到,获得积分10
2秒前
俗丨发布了新的文献求助10
2秒前
3秒前
TOM龙完成签到,获得积分10
3秒前
友好白开水完成签到,获得积分10
4秒前
Cimon发布了新的文献求助20
4秒前
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
5秒前
SciGPT应助科研通管家采纳,获得10
5秒前
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
大太阳完成签到,获得积分10
6秒前
7秒前
明理栾完成签到,获得积分10
10秒前
hey754发布了新的文献求助10
11秒前
所所应助fjhsg25采纳,获得10
11秒前
大丝瓜完成签到 ,获得积分10
12秒前
12秒前
鹏1989完成签到,获得积分10
13秒前
明理栾发布了新的文献求助10
13秒前
ddz发布了新的文献求助10
14秒前
猪猪玉完成签到 ,获得积分10
14秒前
小二郎应助Rachel采纳,获得10
14秒前
chowjb完成签到,获得积分10
15秒前
egg完成签到,获得积分10
16秒前
忘忧完成签到,获得积分10
16秒前
Shayulajiao完成签到,获得积分10
18秒前
忘忧发布了新的文献求助10
19秒前
huang发布了新的文献求助10
19秒前
今后应助ddz采纳,获得10
20秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2421278
求助须知:如何正确求助?哪些是违规求助? 2111188
关于积分的说明 5343444
捐赠科研通 1838625
什么是DOI,文献DOI怎么找? 915359
版权声明 561171
科研通“疑难数据库(出版商)”最低求助积分说明 489514