A Differentially Private Federated Learning Model against Poisoning Attacks in Edge Computing

计算机科学 上传 差别隐私 边缘计算 GSM演进的增强数据速率 边缘设备 软件部署 计算机安全 信息隐私 分布式计算 人工智能 数据挖掘 云计算 操作系统
作者
Jun Zhou,Nan Wu,Yisong Wang,Shouzhen Gu,Zhenfu Cao,Xiaolei Dong,Kim‐Kwang Raymond Choo
出处
期刊:IEEE Transactions on Dependable and Secure Computing [IEEE Computer Society]
卷期号:: 1-1 被引量:11
标识
DOI:10.1109/tdsc.2022.3168556
摘要

Federated learning is increasingly popular, as it allows us to circumvent challenges due to data islands, by training a global model using data from one or more data owners/sources. However, in edge computing, resource-constrained end devices are vulnerable to be compromised and abused to facilitate poisoning attacks. Privacy-preserving is another important property to consider when dealing with sensitive user data on end devices. Most existing approaches only consider either defending against poisoning attacks or supporting privacy, but not both properties simultaneously. In this paper, we propose a differentially private federated learning model against poisoning attacks, designed for edge computing deployment. First, we design a weight-based algorithm to perform anomaly detection on the parameters uploaded by end devices in edge nodes, which improves detection rate using only small-size validation datasets and minimizes the communication cost. Then, differential privacy technology is leveraged to protect the privacy of both data and model in an edge computing setting. We also evaluate and compare the detection performance in the presence of random and customized malicious end devices with the state-of-the-art, in terms of attack resiliency, communication and computation costs. Experimental results demonstrate that our scheme can achieve an optimal tradeoff between security, efficiency and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飘逸的天佑完成签到 ,获得积分10
刚刚
科研通AI5应助Dora.Y采纳,获得10
刚刚
2秒前
2秒前
那地方发布了新的文献求助100
2秒前
3秒前
陈念发布了新的文献求助10
3秒前
孤烟完成签到,获得积分20
3秒前
Hello应助Yancy采纳,获得10
5秒前
大气的紫萍给大气的紫萍的求助进行了留言
5秒前
5秒前
还没想好完成签到,获得积分10
5秒前
英姑应助郝剑身采纳,获得10
6秒前
7秒前
7秒前
禹平露发布了新的文献求助10
7秒前
王一一发布了新的文献求助10
7秒前
薄荷油发布了新的文献求助10
8秒前
科研通AI2S应助贺英采纳,获得10
8秒前
8秒前
SnaiLinsist发布了新的文献求助10
8秒前
8秒前
8秒前
无限的FF发布了新的文献求助30
9秒前
科研通AI5应助Ree采纳,获得30
9秒前
dx3906发布了新的文献求助10
10秒前
完美世界应助qq.com采纳,获得10
10秒前
11秒前
今后应助Lin采纳,获得10
11秒前
万能图书馆应助77采纳,获得10
11秒前
朴实剑通发布了新的文献求助10
12秒前
12秒前
完美世界应助青木蓝采纳,获得10
12秒前
lizhiqian2024发布了新的文献求助10
12秒前
六月发布了新的文献求助10
13秒前
科研通AI5应助zane采纳,获得10
13秒前
木鸽子发布了新的文献求助10
14秒前
DMC北风过境完成签到,获得积分10
14秒前
香蕉觅云应助体贴的采蓝采纳,获得10
15秒前
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787003
求助须知:如何正确求助?哪些是违规求助? 3332619
关于积分的说明 10256691
捐赠科研通 3047851
什么是DOI,文献DOI怎么找? 1672796
邀请新用户注册赠送积分活动 801549
科研通“疑难数据库(出版商)”最低求助积分说明 760271