Using meta-learning for automated algorithms selection and configuration: an experimental framework for industrial big data

计算机科学 大数据 自动化 机器学习 预测分析 分析 人工智能 背景(考古学) 超参数 过程(计算) 数据分析 数据科学 工业工程 数据挖掘 工程类 古生物学 操作系统 生物 机械工程
作者
Moncef Garouani,Adeel Ahmad,Mourad Bouneffa,Mohamed Hamlich,Grégory Bourguin,Arnaud Lewandowski
出处
期刊:Journal of Big Data [Springer Science+Business Media]
卷期号:9 (1) 被引量:25
标识
DOI:10.1186/s40537-022-00612-4
摘要

Abstract Advanced analytics are fundamental to transform large manufacturing data into resourceful knowledge for various purposes. In its very nature, such “industrial big data” can relay its usefulness to reach further utilitarian applications. In this context, Machine Learning (ML) is among the major predictive modeling approaches that can enable manufacturing researchers and practitioners to improve the product quality and achieve resource efficiency by exploiting large amounts of data (which is collected during manufacturing process). However, disposing ML algorithms is a challenging task for manufacturing industrial actors due to the prior specification of one or more algorithms hyperparameters (HPs) and their values. Moreover, manufacturing industrial actors often lack the technical expertise to apply advanced analytics. Consequently, it necessitates frequent consultations with data scientists; but such collaborations tends to cost the delays, which can generate the risks such as human-resource bottlenecks. As the complexity of these tasks increases, so does the demand for support solutions. In response, the field of automated ML (AutoML) is a data mining-based formalism that aims to reduce human effort and speedup the development cycle through automation. In this regard, existing approaches include evolutionary algorithms, Bayesian optimization, and reinforcement learning. These approaches mainly focus on providing the user assistance by automating the partial or entire data analysis process, but they provide very limited details concerning their impact on the analysis. The major goal of these conventional approaches has been generally focused on the performance factors, while the other important and even crucial aspects such as computational complexity are rather omitted. Therefore, in this paper, we present a novel meta-learning based approach to automate ML predictive models built over the industrial big data. The approach is leveraged with development of, AMLBID, an Automated ML tool for Big Industrial Data analyses. It attempts to support the manufacturing engineers and researchers who presumably have meager skills to carry out the advanced analytics. The empirical results show that AMLBID surpasses the state-of-the-art approaches and could retrieve the usefulness of large manufacturing data to prosper the research in manufacturing domain and improve the use of predictive models instead of precluding their outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余味应助小周碎碎念采纳,获得10
刚刚
5秒前
5秒前
NexusExplorer应助Two-Capitals采纳,获得10
6秒前
学术蝗虫发布了新的文献求助10
10秒前
Hello应助靖哥哥采纳,获得10
10秒前
牧童发布了新的文献求助10
11秒前
洛尘完成签到,获得积分10
12秒前
马彦杰完成签到,获得积分10
12秒前
14秒前
自信的九娘完成签到,获得积分10
15秒前
17秒前
X519664508完成签到,获得积分0
17秒前
雪花发布了新的文献求助80
19秒前
可爱的函函应助调皮从云采纳,获得10
19秒前
LL666完成签到 ,获得积分10
19秒前
蛋堡完成签到 ,获得积分10
20秒前
zimo完成签到,获得积分10
22秒前
靖哥哥发布了新的文献求助10
22秒前
22秒前
25秒前
车宇完成签到 ,获得积分10
25秒前
星辰大海应助lvshiwen采纳,获得10
25秒前
若冰完成签到,获得积分10
27秒前
小屁孩完成签到,获得积分10
27秒前
28秒前
流口水完成签到,获得积分10
28秒前
圆圆完成签到 ,获得积分10
29秒前
幽默的友灵完成签到,获得积分10
29秒前
小屁孩发布了新的文献求助10
30秒前
小南完成签到 ,获得积分10
30秒前
33秒前
123321完成签到 ,获得积分10
33秒前
qqqqqqy完成签到,获得积分10
34秒前
_ban发布了新的文献求助10
34秒前
虎妞完成签到 ,获得积分10
39秒前
微笑的井完成签到 ,获得积分10
39秒前
xiaojingbao发布了新的文献求助10
39秒前
79完成签到 ,获得积分10
40秒前
动听煎饼完成签到 ,获得积分10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779389
求助须知:如何正确求助?哪些是违规求助? 3324920
关于积分的说明 10220490
捐赠科研通 3040099
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798721
科研通“疑难数据库(出版商)”最低求助积分说明 758522