Origin of structural degradation in Li-rich layered oxide cathode

阴极 材料科学 电压 电化学 电极 纳米技术 格子(音乐) 离子 氧化物 化学物理 化学 电气工程 物理 冶金 有机化学 物理化学 声学 工程类
作者
Tongchao Liu,Jiajie Liu,Luxi Li,Yu Lei,Jiecheng Diao,Tao Zhou,Shunning Li,Alvin Dai,Wenguang Zhao,Shenyang Xu,Yang Ren,Liguang Wang,Tianpin Wu,Rui Qi,Yinguo Xiao,Jiaxin Zheng,Wonsuk Cha,Ross Harder,Ian Robinson,Jianguo Wen
出处
期刊:Nature [Nature Portfolio]
卷期号:606 (7913): 305-312 被引量:537
标识
DOI:10.1038/s41586-022-04689-y
摘要

Li- and Mn-rich (LMR) cathode materials that utilize both cation and anion redox can yield substantial increases in battery energy density1–3. However, although voltage decay issues cause continuous energy loss and impede commercialization, the prerequisite driving force for this phenomenon remains a mystery3–6 Here, with in situ nanoscale sensitive coherent X-ray diffraction imaging techniques, we reveal that nanostrain and lattice displacement accumulate continuously during operation of the cell. Evidence shows that this effect is the driving force for both structure degradation and oxygen loss, which trigger the well-known rapid voltage decay in LMR cathodes. By carrying out micro- to macro-length characterizations that span atomic structure, the primary particle, multiparticle and electrode levels, we demonstrate that the heterogeneous nature of LMR cathodes inevitably causes pernicious phase displacement/strain, which cannot be eliminated by conventional doping or coating methods. We therefore propose mesostructural design as a strategy to mitigate lattice displacement and inhomogeneous electrochemical/structural evolutions, thereby achieving stable voltage and capacity profiles. These findings highlight the significance of lattice strain/displacement in causing voltage decay and will inspire a wave of efforts to unlock the potential of the broad-scale commercialization of LMR cathode materials. Diffractive imaging of an important class of battery electrodes during cycling shows that lattice strain is a crucial yet overlooked factor that contributes to voltage fade over time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助zj采纳,获得10
1秒前
nhh发布了新的文献求助10
2秒前
2秒前
赘婿应助water采纳,获得10
2秒前
nh3发布了新的文献求助10
2秒前
2秒前
今后应助苏小猫采纳,获得10
4秒前
4秒前
宋文祥发布了新的文献求助10
4秒前
4秒前
领导范儿应助山山而川采纳,获得10
5秒前
5秒前
5秒前
芝麻糊发布了新的文献求助10
5秒前
5秒前
77发布了新的文献求助10
6秒前
酷波er应助周肆采纳,获得10
6秒前
芋泥桃桃发布了新的文献求助10
6秒前
7秒前
summer发布了新的文献求助10
7秒前
乔1完成签到 ,获得积分10
7秒前
8秒前
虚心雁枫完成签到,获得积分10
8秒前
xxx完成签到 ,获得积分10
8秒前
mary发布了新的文献求助10
9秒前
斯文败类应助火星上夏云采纳,获得10
9秒前
xr发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
11秒前
11秒前
椰丝芝麻糊完成签到,获得积分10
12秒前
英吉利25发布了新的文献求助10
12秒前
12秒前
wdy发布了新的文献求助20
13秒前
13秒前
fade完成签到,获得积分20
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286608
求助须知:如何正确求助?哪些是违规求助? 4439255
关于积分的说明 13820892
捐赠科研通 4321209
什么是DOI,文献DOI怎么找? 2371736
邀请新用户注册赠送积分活动 1367325
关于科研通互助平台的介绍 1330805