亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accurate and robust sparse‐view angle CT image reconstruction using deep learning and prior image constrained compressed sensing (DL‐PICCS)

人工智能 深度学习 概化理论 迭代重建 计算机科学 压缩传感 计算机视觉 人工神经网络 模式识别(心理学) 裸奔 图像(数学) 稀疏逼近 医学影像学 图像质量 算法 正规化(语言学) 图像分辨率 稳健性(进化) 卷积神经网络 噪音(视频) 超分辨率 数学 医学 统计 病理
作者
Chengzhu Zhang,Yinsheng Li,Guang-Hong Chen
出处
期刊:Medical Physics [Wiley]
卷期号:48 (10): 5765-5781 被引量:12
标识
DOI:10.1002/mp.15183
摘要

Sparse-view CT image reconstruction problems encountered in dynamic CT acquisitions are technically challenging. Recently, many deep learning strategies have been proposed to reconstruct CT images from sparse-view angle acquisitions showing promising results. However, two fundamental problems with these deep learning reconstruction methods remain to be addressed: (1) limited reconstruction accuracy for individual patients and (2) limited generalizability for patient statistical cohorts.The purpose of this work is to address the previously mentioned challenges in current deep learning methods.A method that combines a deep learning strategy with prior image constrained compressed sensing (PICCS) was developed to address these two problems. In this method, the sparse-view CT data were reconstructed by the conventional filtered backprojection (FBP) method first, and then processed by the trained deep neural network to eliminate streaking artifacts. The outputs of the deep learning architecture were then used as the needed prior image in PICCS to reconstruct the image. If the noise level from the PICCS reconstruction is not satisfactory, another light duty deep neural network can then be used to reduce noise level. Both extensive numerical simulation data and human subject data have been used to quantitatively and qualitatively assess the performance of the proposed DL-PICCS method in terms of reconstruction accuracy and generalizability.Extensive evaluation studies have demonstrated that: (1) quantitative reconstruction accuracy of DL-PICCS for individual patient is improved when it is compared with the deep learning methods and CS-based methods; (2) the false-positive lesion-like structures and false negative missing anatomical structures in the deep learning approaches can be effectively eliminated in the DL-PICCS reconstructed images; and (3) DL-PICCS enables a deep learning scheme to relax its working conditions to enhance its generalizability.DL-PICCS offers a promising opportunity to achieve personalized reconstruction with improved reconstruction accuracy and enhanced generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1分钟前
潇洒觅山完成签到,获得积分10
1分钟前
搜集达人应助科研通管家采纳,获得10
1分钟前
活力的听露完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
shelly发布了新的文献求助10
1分钟前
酷波er应助emotional_damage采纳,获得10
2分钟前
繁荣的青旋完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
lixuebin完成签到 ,获得积分10
3分钟前
4分钟前
赘婿应助葛力采纳,获得10
4分钟前
云梦发布了新的文献求助10
4分钟前
科研通AI2S应助杨文志采纳,获得10
4分钟前
4分钟前
杨文志发布了新的文献求助10
4分钟前
4分钟前
4分钟前
隐形曼青应助emotional_damage采纳,获得10
4分钟前
4分钟前
笨笨水之完成签到,获得积分20
4分钟前
传奇3应助shelly采纳,获得10
5分钟前
emotional_damage完成签到,获得积分10
5分钟前
5分钟前
晚风发布了新的文献求助10
5分钟前
晚风完成签到,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
shelly发布了新的文献求助10
6分钟前
6分钟前
6分钟前
---发布了新的文献求助10
6分钟前
shelly完成签到,获得积分10
6分钟前
7分钟前
赘婿应助---采纳,获得10
7分钟前
8分钟前
8分钟前
葛力发布了新的文献求助10
8分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
ВЕРНЫЙ ДРУГ КИТАЙСКОГО НАРОДА СЕРГЕЙ ПОЛЕВОЙ 500
ВОЗОБНОВЛЕН ВЫПУСК ЖУРНАЛА "КИТАЙ" НА РУССКОМ ЯЗЫКЕ 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906859
求助须知:如何正确求助?哪些是违规求助? 3452364
关于积分的说明 10870149
捐赠科研通 3178211
什么是DOI,文献DOI怎么找? 1755809
邀请新用户注册赠送积分活动 849100
科研通“疑难数据库(出版商)”最低求助积分说明 791370