Intrinsic physicochemical profile of marketed antibody-based biotherapeutics

互补决定区 计算生物学 生物信息学 互补性(分子生物学) 抗体 化学 生物 生物化学 单克隆抗体 遗传学 基因
作者
Lucky Ahmed,Priyanka Gupta,Kyle P. Martin,Justin M. Scheer,Andrew E. Nixon,Sandeep Kumar
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:118 (37) 被引量:44
标识
DOI:10.1073/pnas.2020577118
摘要

Feeding biopharma pipelines with biotherapeutic candidates that possess desirable developability profiles can help improve the productivity of biologic drug discovery and development. Here, we have derived an in silico profile by analyzing computed physicochemical descriptors for the variable regions (Fv) found in 77 marketed antibody-based biotherapeutics. Fv regions of these biotherapeutics demonstrate significant diversities in their germlines, complementarity determining region loop lengths, hydrophobicity, and charge distributions. Furthermore, an analysis of 24 physicochemical descriptors, calculated using homology-based molecular models, has yielded five nonredundant descriptors whose distributions represent stability, isoelectric point, and molecular surface characteristics of their Fv regions. Fv regions of candidates from our internal discovery campaigns, human next-generation sequencing repertoires, and those in clinical-stages (CST) were assessed for similarity with the physicochemical profile derived here. The Fv regions in 33% of CST antibodies show physicochemical properties that are dissimilar to currently marketed biotherapeutics. In comparison, physicochemical characteristics of ∼29% of the Fv regions in human antibodies and ∼27% of our internal hits deviated significantly from those of marketed biotherapeutics. The early availability of this information can help guide hit selection, lead identification, and optimization of biotherapeutic candidates. Insights from this work can also help support portfolio risk assessment, in-licensing, and biopharma collaborations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CodeCraft应助xx采纳,获得10
1秒前
维特完成签到,获得积分10
1秒前
2秒前
zeng发布了新的文献求助10
2秒前
杯子完成签到,获得积分20
2秒前
3秒前
科研通AI5应助奇遇采纳,获得30
4秒前
5秒前
HHH完成签到,获得积分10
5秒前
6秒前
杯子发布了新的文献求助30
6秒前
xuezha发布了新的文献求助10
7秒前
8秒前
8秒前
李健应助牛司采纳,获得10
8秒前
彭于晏应助饭饭采纳,获得10
8秒前
HHH发布了新的文献求助10
9秒前
Herman_Chen发布了新的文献求助10
9秒前
英俊的铭应助euy采纳,获得10
10秒前
丘比特应助西瓜采纳,获得10
10秒前
Ly啦啦啦发布了新的文献求助10
11秒前
现代千易完成签到 ,获得积分10
11秒前
稳重的菠萝应助zeng采纳,获得10
13秒前
14秒前
情怀应助hh采纳,获得10
14秒前
14秒前
LUMEN发布了新的文献求助10
14秒前
达到发布了新的文献求助10
14秒前
ch完成签到 ,获得积分10
16秒前
jake完成签到,获得积分10
17秒前
wanci应助zz采纳,获得10
18秒前
牛司发布了新的文献求助10
19秒前
Soleil完成签到 ,获得积分10
19秒前
hahage发布了新的文献求助10
20秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
桐桐应助科研通管家采纳,获得10
23秒前
领导范儿应助科研通管家采纳,获得10
23秒前
Ava应助科研通管家采纳,获得10
23秒前
23秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Gothic forms of feminine fictions 200
Stock price prediction in Chinese stock markets based on CNN-GRU-attention model 200
The phrasal lexicon 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836238
求助须知:如何正确求助?哪些是违规求助? 3378602
关于积分的说明 10505076
捐赠科研通 3098233
什么是DOI,文献DOI怎么找? 1706347
邀请新用户注册赠送积分活动 820967
科研通“疑难数据库(出版商)”最低求助积分说明 772349