A novel reliability-based regression model for medical modeling and forecasting

概化理论 可靠性(半导体) 计算机科学 水准点(测量) 回归 回归分析 机器学习 数据挖掘 线性回归 特征(语言学) 人工智能 计量经济学 统计 数学 功率(物理) 物理 语言学 哲学 大地测量学 量子力学 地理
作者
Mehdi Khashei,Negar Bakhtiarvand,Sepideh Etemadi
出处
期刊:Diabetes and Metabolic Syndrome: Clinical Research and Reviews [Elsevier BV]
卷期号:15 (6): 102331-102331 被引量:2
标识
DOI:10.1016/j.dsx.2021.102331
摘要

In recent decades, modeling and forecasting have played a significant role in the diagnosis and treatment of different diseases. Various forecasting models have been developed to improve data-based decision-making processes in medical systems. Although these models differ in many aspects, they all originate from the assumption that more generalizable results are achieved by more accurate models. This means that accuracy is considered as the only prominent feature to evaluate the generalizability of forecasting models. On the other side, due to the changeable medical situations and even changeable models' results, making stable and reliable performance is necessary to adopt appropriate medical decisions. Hence, reliability and stability of models' performance is another effective factor on the model's generalizability that should be taken into consideration in developing medical forecasting models.In this paper, a new reliability-based forecasting approach is developed to address this gap and achieve more consistent performance in making medical predictions. The proposed approach is implemented on the classic regression model which is a common accuracy-based statistical method in medical fields. To evaluate the effectiveness of the proposed model, it has been performed by using two medical benchmark datasets from UCI and obtained results are compared with the classic regression model.Empirical results show that the proposed model has outperformed the classic regression model in terms of error criteria such as MSE and MAE. So, the presented model can be utilized as an appropriate alternative for the traditional regression model in making effective medical decisions.Based on the obtained results, the proposed model can be an appropriate alternative for traditional multiple linear regression for modeling in real-world applications, especially when more generalization and/or more reliability is needed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助啦啦啦采纳,获得20
3秒前
3秒前
风信子完成签到,获得积分10
3秒前
5秒前
6秒前
nbhh发布了新的文献求助10
7秒前
张键澄发布了新的文献求助10
10秒前
香蕉觅云应助斯文的道罡采纳,获得10
11秒前
maybe豪发布了新的文献求助10
13秒前
14秒前
Jasper应助kkk采纳,获得30
15秒前
nbhh完成签到,获得积分10
16秒前
17秒前
勤奋妙梦发布了新的文献求助10
19秒前
wanci应助猴子大王666采纳,获得10
19秒前
千寻未央完成签到,获得积分10
23秒前
高高亦巧发布了新的文献求助10
23秒前
咕噜咕噜关注了科研通微信公众号
23秒前
24秒前
happy完成签到,获得积分10
26秒前
小二郎应助勤奋妙梦采纳,获得10
27秒前
zzz完成签到,获得积分10
28秒前
追逐的疯完成签到,获得积分10
30秒前
31秒前
霖宸羽完成签到,获得积分10
31秒前
今后应助Blue采纳,获得10
31秒前
HtheJ完成签到,获得积分10
31秒前
科研通AI5应助2305814008采纳,获得10
32秒前
32秒前
32秒前
潺潺流水完成签到,获得积分10
33秒前
幼儿园高材生关注了科研通微信公众号
33秒前
34秒前
xy完成签到,获得积分10
34秒前
华仔应助冷静的小之采纳,获得10
35秒前
高高亦巧完成签到,获得积分20
36秒前
小二郎应助zhhr采纳,获得10
36秒前
36秒前
咕噜咕噜发布了新的文献求助10
37秒前
37秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846953
求助须知:如何正确求助?哪些是违规求助? 3389507
关于积分的说明 10557444
捐赠科研通 3109793
什么是DOI,文献DOI怎么找? 1713994
邀请新用户注册赠送积分活动 825026
科研通“疑难数据库(出版商)”最低求助积分说明 775172