Coupled Graph ODE for Learning Interacting System Dynamics

颂歌 计算机科学 常微分方程 理论计算机科学 图形 参数化复杂度 动力系统理论 系统动力学 算法 人工智能 微分方程 数学 应用数学 量子力学 物理 数学分析
作者
Zijie Huang,Yizhou Sun,Wei Wang
标识
DOI:10.1145/3447548.3467385
摘要

Many real-world systems such as social networks and moving planets are dynamic in nature, where a set of coupled objects are connected via the interaction graph and exhibit complex behavior along the time. For example, the COVID-19 pandemic can be considered as a dynamical system, where objects represent geographical locations (e.g., states) whose daily confirmed cases of infection evolve over time. Outbreak at one location may influence another location as people travel between these locations, forming a graph. Thus, how to model and predict the complex dynamics for these systems becomes a critical research problem. Existing work on modeling graph-structured data mostly assumes a static setting. How to handle dynamic graphs remains to be further explored. On one hand, features of objects change over time, influenced by the linked objects in the interaction graph. On the other hand, the graph itself can also evolve, where new interactions (links) may form and existing links may drop, which may in turn be affected by the dynamic features of objects. In this paper, we propose coupled graph ODE: a novel latent ordinary differential equation (ODE) generative model that learns the coupled dynamics of nodes and edges with a graph neural network (GNN) based ODE in a continuous manner. Our model consists of two coupled ODE functions for modeling the dynamics of edges and nodes based on their latent representations respectively. It employs a novel encoder parameterized by a GNN for inferring the initial states from historical data, which serves as the starting point of the predicted latent trajectories. Experiment results on the COVID-19 dataset and the simulated social network dataset demonstrate the effectiveness of our proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
溫蒂应助解觅荷采纳,获得10
刚刚
小马甲应助meng采纳,获得10
1秒前
ddd完成签到 ,获得积分10
2秒前
星海殇完成签到 ,获得积分0
3秒前
10秒前
李健的小迷弟应助realtimes采纳,获得10
11秒前
GuSiwen完成签到,获得积分10
16秒前
meng发布了新的文献求助10
16秒前
大曾完成签到,获得积分20
16秒前
22秒前
22秒前
22秒前
坦率尔琴完成签到,获得积分10
26秒前
狗咚嘻完成签到,获得积分10
26秒前
科研通AI5应助要懒死了hhh采纳,获得10
27秒前
科研通AI5应助要懒死了hhh采纳,获得10
27秒前
YZ完成签到 ,获得积分10
27秒前
27秒前
科研通AI5应助要懒死了hhh采纳,获得10
27秒前
27秒前
隐形曼青应助要懒死了hhh采纳,获得10
27秒前
科研通AI5应助要懒死了hhh采纳,获得10
27秒前
科研通AI5应助要懒死了hhh采纳,获得10
27秒前
英俊的铭应助要懒死了hhh采纳,获得10
27秒前
科研通AI5应助要懒死了hhh采纳,获得10
27秒前
李爱国应助要懒死了hhh采纳,获得10
27秒前
realtimes发布了新的文献求助10
28秒前
唐小刚完成签到,获得积分10
38秒前
mkljl发布了新的文献求助10
39秒前
认真初之完成签到,获得积分10
41秒前
天天快乐应助mariawang采纳,获得10
42秒前
黑焦糖完成签到,获得积分10
43秒前
乐宝完成签到,获得积分10
45秒前
46秒前
47秒前
良仑完成签到,获得积分10
49秒前
提灯发布了新的文献求助10
50秒前
51秒前
快快跑咯完成签到,获得积分10
51秒前
monster0101完成签到,获得积分10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779589
求助须知:如何正确求助?哪些是违规求助? 3325050
关于积分的说明 10221197
捐赠科研通 3040176
什么是DOI,文献DOI怎么找? 1668673
邀请新用户注册赠送积分活动 798729
科研通“疑难数据库(出版商)”最低求助积分说明 758535